Evolutionary Consequences (evolutionary + consequence)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Evolutionary Consequences

  • important evolutionary consequence


  • Selected Abstracts


    SYNTHESIS: Evolutionary consequences of fishing and their implications for salmon

    EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 2 2008
    Jeffrey J. Hard
    Abstract We review the evidence for fisheries-induced evolution in anadromous salmonids. Salmon are exposed to a variety of fishing gears and intensities as immature or maturing individuals. We evaluate the evidence that fishing is causing evolutionary changes to traits including body size, migration timing and age of maturation, and we discuss the implications for fisheries and conservation. Few studies have fully evaluated the ingredients of fisheries-induced evolution: selection intensity, genetic variability, correlation among traits under selection, and response to selection. Most studies are limited in their ability to separate genetic responses from phenotypic plasticity, and environmental change complicates interpretation. However, strong evidence for selection intensity and for genetic variability in salmon fitness traits indicates that fishing can cause detectable evolution within ten or fewer generations. Evolutionary issues are therefore meaningful considerations in salmon fishery management. Evolutionary biologists have rarely been involved in the development of salmon fishing policy, yet evolutionary biology is relevant to the long-term success of fisheries. Future management might consider fishing policy to (i) allow experimental testing of evolutionary responses to exploitation and (ii) improve the long-term sustainability of the fishery by mitigating unfavorable evolutionary responses to fishing. We provide suggestions for how this might be done. [source]


    Evolutionary consequences of autopolyploidy

    NEW PHYTOLOGIST, Issue 1 2010
    Christian Parisod
    Summary Autopolyploidy is more common in plants than traditionally assumed, but has received little attention compared with allopolyploidy. Hence, the advantages and disadvantages of genome doubling per se compared with genome doubling coupled with hybridizations in allopolyploids remain unclear. Autopolyploids are characterized by genomic redundancy and polysomic inheritance, increasing effective population size. To shed light on the evolutionary consequences of autopolyploidy, we review a broad range of studies focusing on both synthetic and natural autopolyploids encompassing levels of biological organization from genes to evolutionary lineages. The limited evidence currently available suggests that autopolyploids neither experience strong genome restructuring nor wide reorganization of gene expression during the first generations following genome doubling, but that these processes may become more important in the longer term. Biogeographic and ecological surveys point to an association between the formation of autopolyploid lineages and environmental change. We thus hypothesize that polysomic inheritance may provide a short-term evolutionary advantage for autopolyploids compared to diploid relatives when environmental change enforces range shifts. In addition, autopolyploids should possess increased genome flexibility, allowing them to adapt and persist across heterogeneous landscapes in the long run. [source]


    Tritrophic interactions and trade-offs in herbivore fecundity on hybridising host plants

    ECOLOGICAL ENTOMOLOGY, Issue 3 2004
    Maria V. Cattell
    Abstract., 1. Interspecific plant hybridisation can have important evolutionary consequences for hybridising plants and for the organisms that they interact with on multiple trophic levels. In this study the effects of plant hybridisation on the abundance of herbivores and on the levels of herbivore parasitism were investigated. 2. Borrichia frutescens, B. arborescens, and their hybrid (B. × cubana) were censused for Asphondylia borrichiae galls and Pissonotus quadripustulatus plant hoppers in the Florida Keys. Levels of egg parasitism were determined by dissecting parental and hybrid stems and galls for herbivore and parasite eggs and larvae. Stem toughness and gall size are plant-mediated modes of protection from parasitism and these were also measured. For gall midges, fly size was measured as an estimate of fecundity. 3. Field censuses indicated that herbivore abundances varied on hybrid hosts relative to parent plant species and that the different herbivore species exhibited different patterns of abundance. Asphondylia borrichiae gall numbers followed the additive pattern of abundance while P. quadripustulatus numbers most closely resembled the dominance pattern. 4. Parasitism of P. quadripustulatus eggs was high on B. frutescens and the hybrids, and low on B. arborescens, which also had significantly tougher stems. Asphondylia borrichiae suffered the highest levels of parasitism on B. frutescens, the host plant which produced the smallest galls. On B. arborescens, which produced the largest galls, levels of A. borrichiae parasitism were lowest. Both parasitism and gall size were intermediate on the hybrid plants. Galls on B. arborescens and hybrid plants produced significantly smaller flies then those from B. frutescens suggesting that, when selecting hosts from among parent species and hybrids, gall flies may face a trade-off between escape from natural enemies and maximising fecundity. [source]


    Dispersal between host populations in field conditions: navigation rules in the parasitoid Venturia canescens

    ECOLOGICAL ENTOMOLOGY, Issue 3 2003
    E. Desouhant
    Abstract. 1. Dispersal is a life-history trait that can have great ecological and evolutionary consequences, however understanding of how insects disperse is limited. 2. Navigation rules of the solitary koinobiont parasitoid of the pyralid moth larvae Venturia canescens (Gravenhorst) were studied in conditions that it is likely to meet when dispersing between host populations and in the absence of cues related directly to the presence of hosts. 3. Mark,release,recapture experiments were conducted in a natural host-free habitat, and letting the animals disperse for different periods. 4. In the presence of vegetation, wasps seemed to disperse rapidly (1 h for an area of ,,1 ha) and capture rates were independent of both dispersal time and distance from the release point. 5. The navigation rules of V. canescens during dispersal between tree stands can be summarised as: move up- or down-wind, avoid or pass through open, sunny areas, and go for shady and dense vegetation. 6. The consequences of the navigation rules for host,parasitoid dynamics are discussed in relation to different spatial scales. [source]


    Ecological and evolutionary consequences of niche construction for its agent

    ECOLOGY LETTERS, Issue 10 2008
    Grigoris Kylafis
    Abstract Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant,soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction. [source]


    Effects of Ultraviolet Radiation on Locomotion and Orientation in Roughskin Newts (Taricha granulosa)

    ETHOLOGY, Issue 3 2000
    Andrew R. Blaustein
    Environmental changes, including those associated with the atmosphere may significantly affect individual animals and ultimately populations. Ultraviolet (UV) radiation, perhaps increasing due to stratospheric ozone depletion, has been linked to mortality in a number of organisms, including amphibians. The eggs and larvae of certain amphibian species hatch at significantly lower rates when exposed to ambient ultraviolet light. Yet little is known about the sublethal effects of UV radiation. For example, UV radiation may affect specific behaviors of an animal that could alter its ability to survive. To examine if UV radiation affects amphibian behavior, we used roughskin newts (Taricha granulosa) as a model. Newts were exposed to low-level doses of UV in the laboratory and then tested in the field to examine if UV-exposed and control (no UV) newts differed in orientation towards water or in locomotor activity levels. UV-exposed and control newts both exhibited a significant orientation towards water in field tests but there was no significant difference in orientation between treatments. However, UV-exposed newts were significantly more active than control newts. Our results suggest that exposure to short-term low levels of UV radiation alters certain behaviors. Environmentally induced changes in behavior may have significant ecological and evolutionary consequences. [source]


    SEXUAL SELECTION AND INTERACTING PHENOTYPES IN EXPERIMENTAL EVOLUTION: A STUDY OF DROSOPHILA PSEUDOOBSCURA MATING BEHAVIOR

    EVOLUTION, Issue 7 2008
    Leonardo D. Bacigalupe
    Sexual selection requires social interactions, particularly between the sexes. When trait expression is influenced by social interactions, such traits are called interacting phenotypes and only recently have the evolutionary consequences of interacting phenotypes been considered. Here we investigated how variation in relative fitness, or the opportunity for sexual selection, affected the evolutionary trajectories of interacting phenotypes. We used experimentally evolved populations of the naturally promiscuous Drosophila pseudoobscura, in which the numbers of potential interactions between the sexes, and therefore relative fitness, were manipulated by altering natural levels of female promiscuity. We considered two different mating interactions between the sexes: mating speed and copulation duration. We investigated the evolutionary trajectories of means and (co)variances (P) and also the influence of genetic drift on the evolutionary response of these interactions. Our sexual selection treatments did not affect the means of either mating speed or copulation duration, but they did affect P. We found that the means of both traits differed among replicates within each selection treatment whereas the Ps did not. Changes as a consequence of genetic drift were excluded. Our results show that although variable potential strengths of sexual interactions influence the evolution of interacting phenotypes, the influence may be nonlinear. [source]


    SEXUAL CONFLICT AND CRYPTIC FEMALE CHOICE IN THE BLACK FIELD CRICKET, TELEOGRYLLUS COMMODUS

    EVOLUTION, Issue 4 2006
    Luc F. Bussiégre
    Abstract The prevalence and evolutionary consequences of cryptic female choice (CFC) remain highly controversial, not least because the processes underlying its expression are often concealed within the female reproductive tract. However, even when female discrimination is relatively easy to observe, as in numerous insect species with externally attached spermatophores, it is often difficult to demonstrate directional CFC for certain male phenotypes over others. Using a biological assay to separate male crickets into attractive or unattractive categories, we demonstrate that females strongly discriminate against unattractive males by removing their spermatophores before insemination can be completed. This results in significantly more sperm being transferred by attractive males than unattractive males. Males respond to CFC by mate guarding females after copulation, which increases the spermatophore retention of both attractive and unattractive males. Interestingly, unattractive males who suffered earlier interruption of sperm transfer benefited more from mate guarding, and they guarded females more vigilantly than attractive males. Our results suggest that postcopulatory mate guarding has evolved via sexual conflict over insemination times rather than through genetic benefits of biasing paternity toward vigorous males, as has been previously suggested. [source]


    ADAPTIVE MIGRATORY DIVERGENCE AMONG SYMPATIRIC BROK CHARR POPULATIONS

    EVOLUTION, Issue 3 2005
    Dylan J. Fraser
    Abstract Ecological processes clearly contribute to population divergence, yet how they interact over complex life cycles remains poorly understood. Notably, the evolutionary consequences of migration between breeding and nonbreeding areas have received limited attention. We provide evidence for a negative association between interpopulation differences in migration (between breeding and feeding areas, as well as within each) and the amount of gene flow (m) among three brook charr (Salvelinus fontinalis) populations inhabitingMistassini Lake, Quebec, Canada. Individuals (n=1166) captured throughout lake feeding areas over two consecutive sampling years were genotyped (10 microsatellites) and assigned to one of the three populations. Interpopulation differences in migration were compared based on spatial distribution overlap, habitat selection, migration distance within feeding areas, and morphology. We observed a temporally stable, heterogeneous spatial distribution within feeding areas among populations, with the extent of spatial segregation related to differential habitat selection (represented by littoral zone substrate). Spatial segregation was lowest and gene flow highest (m=0.015) between two populations breeding in separate lake inflows. Segregation was highest and gene flow was lowest (mean m=0.007) between inflow populations and a third population breeding in the outflow. Compared to outflow migrants, inflow migrants showed longer migration distances within feeding areas(64,70 km vs. 22 km). After entering natal rivers to breed, inflow migrants also migrated longer distances (35,75 km) and at greater elevations (50,150 m) to breeding areas than outflow migrants (0,15 km; ,10,0 m). Accordingly, inflow migrants were more streamlined with longer caudal regions, traits known to improve swimming efficiency. There was no association between the geographic distance separating population pairs and the amount of gene flow they exchanged. Collectively, our results are consistent with the hypothesis that reduced gene flow between these brook charr populations results from divergent natural selection leading to interpopulation differences in migration. They also illustrate how phenotypic and genetic differentiation may arise over complex migratory life cycles. [source]


    THE ROLE OF SIZE-SPECIFIC PREDATION IN THE EVOLUTION AND DIVERSIFICATION OF PREY LIFE HISTORIES

    EVOLUTION, Issue 5 2002
    Troy Day
    Abstract Some of the best empirical examples of life-history evolution involve responses to predation. Nevertheless, most life-history theory dealing with responses to predation has not been formulated within an explicit dynamic food-web context. In particular, most previous theory does not explicitly consider the coupled population dynamics of the focal species and its predators and resources. Here we present a model of life-history evolution that explores the evolutionary consequences of size-specific predation on small individuals when there is a trade-off between growth and reproduction. The model explicitly describes the population dynamics of a predator, the prey of interest, and its resource. The selective forces that cause life-history evolution in the prey species emerge from the ecological interactions embodied by this model and can involve important elements of frequency dependence. Our results demonstrate that the strength of the coupling between predator and prey in the community determines many aspects of life-history evolution. If the coupling is weak (as is implicitly assumed in many previous models), differences in resource productivity have no effect on the nature of life-history evolution. A single life-history strategy is favored that minimizes the equilibrium resource density (if possible). If the coupling is strong, then higher resource productivities select for faster growth into the predation size refuge. Moreover, under strong coupling it is also possible for natural selection to favor an evolutionary diversification of life histories, possibly resulting in two coexisting species with divergent life-history strategies. [source]


    FREQUENCY AND SPATIAL PATTERNING OF CLONAL REPRODUCTION IN LOUISIANA IRIS HYBRID POPULATIONS

    EVOLUTION, Issue 1 2000
    John M. Burke
    Abstract., The plant genera in which natural hybridization is most prevalent tend to be outcrossing perennials with some mechanism for clonal (i.e., asexual) reproduction. Although clonal reproduction in fertile, sexually reproducing hybrid populations could have important evolutionary consequences, little attention has been paid to quantifying this parameter in such populations. In the present study, we examined the frequency and spatial patterning of clonal reproduction in two Louisiana iris hybrid populations. Allozyme analysis of both populations revealed relatively high levels of genotypic diversity. However, a considerable amount of clonality was apparent. Nearly half of all genets (47%) in one population and more than half (61%) in the other had multiple ramets. Furthermore, both populations exhibited relatively high levels of genetic structuring, a pattern that resulted from the aggregation of clonal ramets. The occurrence of clonal reproduction in hybrid populations could not only facilitate introgression through an increase in the number of flowering ramets per genet and/or the survivorship of early generation hybrids, but might also influence the mating system of such populations. Any potential increase in the selfing rate due to cross-pollination among ramets of the same genet may, in turn, increase the likelihood of homoploid hybrid speciation. [source]


    Phenotypic plasticity in insects: the effects of substrate color on the coloration of two ground-hopper species

    EVOLUTION AND DEVELOPMENT, Issue 3 2008
    Axel Hochkirch
    SUMMARY The question of how phenotypic variation is maintained within populations has long been a central issue in evolutionary biology. Most of these studies focused on the maintenance of genetic variability, but the phenotype of organisms may also be influenced by environmental cues experienced during ontogeny. Color polymorphism has received particular attention in evolutionary studies as it has strong fitness consequences. However, if body coloration is influenced by the environment, any conclusions on evolutionary consequences of fitness trade-offs can be misleading. Here we present data from a laboratory experiment on the influence of substrate color on three aspects of the coloration of two ground-hopper species, Tetrix subulata and Tetrix ceperoi. We reared hatchlings either on dark or on light substrates, using a split-brood design. Although the type of pronotal pattern changed mainly in response to nymphal development, the basic color was strongly influenced by the substrate color. In both species, black and dark olive color morphs were found more frequently on the dark substrate, whereas the gray color morph dominated on the light substrate. These findings have considerable implications for our understanding of color morph evolution as they show that color polymorphism may not only be maintained by natural selection acting on discrete color morphs, but also by phenotypic plasticity, which enables organisms to adjust to the environmental conditions experienced during ontogeny. This facultative morphology is opposing to the prevailing view of color morph adaptation, which assumes a purely genetic determination and co-evolution of discrete color morphs with life history traits. [source]


    Protection of DNA during early development: adaptations and evolutionary consequences

    EVOLUTION AND DEVELOPMENT, Issue 1 2003
    David Epel
    SUMMARY The rapidly dividing cleavage stages of embryos do not have the typical responses to cell damage, such as induction of the heat shock response, use of mitotic checkpoints, or use of apoptosis to eliminate severely damaged cells. This could create problems with integrity of DNA, but the solution in these embryos appears to be a "be prepared" approach, in which specific adaptations are used to minimize DNA damage during cleavage and the use of apoptosis at the mid-blastula transition to remove any cells that were nevertheless damaged. It has been assumed that this approach has evolved because of the advantage of rapid production of a motile larvae. Alternatively, this particular approach may have the selective advantage of increasing mutation rate when there are greater environmental stresses. This could provide more variants on which selective pressures could act and thus accelerate evolution during environmentally stressful periods. [source]


    Child's play: Reflections on the invisibility of children in the paleolithic record

    EVOLUTIONARY ANTHROPOLOGY, Issue 6 2006
    John J. Shea
    Were there children in Early Paleolithic times? At first glance, this seems a stupid question. We are obviously descended from Paleolithic ancestors. Yet, in archeological models of Paleolithic stone tool variability and assemblage formation processes, children might as well be invisible. There have been some efforts to identify byproducts of children's activities in a few Late Paleolithic contexts, but their possible role in broader patterns of Paleolithic industrial variability remains largely unexplored.1 In this paper I argue that the reason we know so little about children's knapping behavior in prehistory is not that this behavior was genuinely absent, but rather that we have not looked hard enough or in the right way at the lithic record. This is a pity, because of all the behaviors we archeologists attempt to reconstruct in our research, child-rearing must certainly number among those with the most immediate and important evolutionary consequences. [source]


    ORIGINAL ARTICLE: Big dams and salmon evolution: changes in thermal regimes and their potential evolutionary consequences

    EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 2 2008
    Michael J. Angilletta Jr
    Abstract Dams designed for hydropower and other purposes alter the environments of many economically important fishes, including Chinook salmon (Oncorhynchus tshawytscha). We estimated that dams on the Rogue River, the Willamette River, the Cowlitz River, and Fall Creek decreased water temperatures during summer and increased water temperatures during fall and winter. These thermal changes undoubtedly impact the behavior, physiology, and life histories of Chinook salmon. For example, relatively high temperatures during the fall and winter should speed growth and development, leading to early emergence of fry. Evolutionary theory provides tools to predict selective pressures and genetic responses caused by this environmental warming. Here, we illustrate this point by conducting a sensitivity analysis of the fitness consequences of thermal changes caused by dams, mediated by the thermal sensitivity of embryonic development. Based on our model, we predict Chinook salmon likely suffered a decrease in mean fitness after the construction of a dam in the Rogue River. Nevertheless, these demographic impacts might have resulted in strong selection for compensatory strategies, such as delayed spawning by adults or slowed development by embryos. Because the thermal effects of dams vary throughout the year, we predict dams impacted late spawners more than early spawners. Similar analyses could shed light on the evolutionary consequences of other environmental perturbations and their interactions. [source]


    Active brood care in Cancer setosus (Crustacea: Decapoda): the relationship between female behaviour, embryo oxygen consumption and the cost of brooding

    FUNCTIONAL ECOLOGY, Issue 2 2002
    J. A. Baeza
    Summary 1,Previous studies have shown that oxygen is limiting in embryo masses of marine invertebrates. It has been suggested that several behaviours found in brooding females of brachyuran crabs are used to ventilate and provide oxygen to the embryo masses. 2,The relationship between female brooding behaviour, oxygen consumption of embryos and oxygen provision to the brood mass for embryos at different developmental stages was studied, using the marine crab Cancer setosus. The changes in oxygen consumption of brooding females associated with changes in oxygen provision to the brood were also estimated. 3Brooding females of C. setosus behaved differently from non-brooding females. Abdominal flapping was associated with an increase in oxygen availability in the centre of the brood mass; the frequency of abdominal flapping increased with embryonic development, as oxygen demand of crab embryos increased. Oxygen consumption of brooding females also increased throughout embryonic development. The difference in oxygen consumption between brooding and non-brooding females was used as an indicator of the cost of oxygen provision (brooding). 4,These results provide the first evidence , among crabs and other marine invertebrates , of a direct link between active brood care and oxygen provision. It is possible that parental care in marine invertebrates is strongly linked to oxygen provision, since oxygen limitation has been reported for several brooding taxa. The simple physiological constraint of oxygen provision in marine invertebrates may have important ecological and evolutionary consequences. [source]


    Patterns of change in timing of spring migration in North European songbird populations

    JOURNAL OF AVIAN BIOLOGY, Issue 1 2006
    Anders P. Tøttrup
    From 1976 to 1997 passerines were mist-netted and ringed on the island of Christiansø, in the Baltic Sea. Here we present analyses of phenological changes (i.e. time of arrival) for 25 species based on the entire populations of mist-netted songbirds during spring migration. We used two approaches (least square and quantile regression) to test for changes in arrival time of first individuals and three different parts of the songbird populations (i.e. first 5%, 50% and 95% of the total number of trapped individuals corrected for trapping effort). Our results generally confirm earlier spring arrival of migratory passerines with an overall earlier arrival of 0.26 days per year. Changes in the arrival time of first individuals are often the only data available. They are typically analysed on the assumption that they are representative of their respective population. We found a unidirectional, significant change towards earlier arrival for all four measures of arrival timing which seem to support this. However, the four measures of arrival are changing at different rates. First individuals changed arrival time more rapidly than the first 5%, 50% and 95% of the spring total. Such differences are likely to be important for our understanding of population-dynamic changes in relation to climate change. These differences may also have long-term evolutionary consequences. Migration distance seems to affect the degree of change in arrival time, but we found no difference between species wintering in different regions of Africa. [source]


    Moving to suburbia: ontogenetic and evolutionary consequences of life on predator-free islands

    JOURNAL OF BIOGEOGRAPHY, Issue 5-6 2002
    Daniel T. Blumstein
    Aim Many species find themselves isolated from the predators with which they evolved. This situation commonly occurs with island biota, and is similar to moving from the dangerous inner-city to the suburbs. Economic thinking tells us that we should expect costly antipredator behaviour to be lost if it is no longer beneficial. The loss of antipredator behaviour has important consequences for those seeking to translocate or reintroduce individuals from predator-free islands back to the predator-rich mainland, but we have neither a detailed understanding of the mechanisms of loss nor information on the time course of relaxed selection. Some antipredator behaviours are experience-dependent: experience with predators is required for their proper performance. In these cases, antipredator behaviour is lost after only a single generation of isolation, but it should be able to be regained following exposure to predators. Other behaviours may be more `hard-wired'. The evolutionary loss of antipredator behaviour may occur over as few as several generations, but behaviours may also persist for many thousands of years of predator-free living. Location Australia and New Zealand. Methods I discuss the results of a series of studies designed to document the mechanisms and time course of relaxed selection for antipredator behaviour in macropodid marsupials. Controlled studies of visual, acoustic and olfactory predator recognition, as well as field studies of antipredator vigilance focused on several species of kangaroos and wallabies. Results Visual predator recognition may be retained following 9500 years of relaxed selection, but olfactory and acoustic predator recognition may have to be learned. Insular populations allow humans to approach closer before fleeing than mainland animals. Insular species may retain `group size effects' , the ability to seek safety in numbers , when they are exposed to any predators. Main conclusions I suggest that the presence of any predators may be an important factor in maintaining functional antipredator behaviour. Managers should pay particular attention as to the source and evolutionary history of their population when planning translocations or reintroductions. [source]


    Geographic variation in sperm traits reflects predation risk and natural rates of multiple paternity in the guppy

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2010
    K. E. ELGEE
    Abstract Guppies (Poecilia reticulata) are models for understanding the interplay between natural and sexual selection. In particular, predation has been implicated as a major force affecting female sexual preferences, male mating tactics and the level of sperm competition. When predation is high, females typically reduce their preferences for showy males and engage more in antipredator behaviours, whereas males exploit these changes by switching from sexual displays to forced matings. These patterns are thought to account for the relatively high levels of multiple paternity in high-predation populations compared to low-predation populations. Here, we assess the possible evolutionary consequences of these patterns by asking whether variation in sperm traits reflect differences in predation intensity among four pairs of Trinidadian populations: four that experience relatively low levels of predation from a gape-limited predator and four that experience relatively high levels of predation from a variety of piscivores. We found that males in high-predation populations had faster swimming sperm with longer midpieces compared to males in low-predation populations. However, we found no differences among males in high- and low-predation populations with respect to sperm number, sperm head length, flagellum length and total sperm length. [source]


    Male,male competition, female mate choice and their interaction: determining total sexual selection

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2009
    JOHN HUNT
    Abstract Empirical studies of sexual selection typically focus on one of the two mechanisms of sexual selection without integrating these into a description of total sexual selection, or study total sexual selection without quantifying the contributions of all of the mechanisms of sexual selection. However, this can provide an incomplete or misleading view of how sexually selected traits evolve if the mechanisms of sexual selection are opposing or differ in form. Here, we take a two-fold approach to advocate a direction for future studies of sexual selection. We first show how a quantitative partitioning and examination of sexual selection mechanisms can inform by identifying illustrative studies that describe both male,male competition and female mate choice acting on the same trait. In our sample, the most common trait where this occurred was body size, and selection was typically linear. We found that male,male competition and female mate choice can be reinforcing or opposing, although the former is most common in the literature. The mechanisms of sexual selection can occur simultaneously or sequentially, and we found they were more likely to be opposing when the mechanisms operated sequentially. The degree and timing that these mechanisms interact have important implications for the operation of sexual selection and needs to be considered in designing studies. Our examples highlight where empirical data are needed. We especially lack standardized measures of the form and strength of selection imposed by each mechanism of sexual selection and how they combine to determine total sexual selection. Secondly, using quantitative genetic principles, we outline how the selection imposed by individual mechanisms can be measured and combined to estimate the total strength and form of sexual selection. We discuss the evolutionary consequences of combining the mechanisms of sexual selection and interpreting total sexual selection. We suggest how this approach may result in empirical progress in the field of sexual selection. [source]


    Locomotor impairment of gravid lizards: is the burden physical or physiological?

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2000
    Olsson
    Pregnancy is associated with reduced locomotor performance in several reptile species, but the reasons for this reduction remain unclear. Previous authors generally have assumed that the decreased maternal mobility is due to the physical burden of the clutch, but our data on a viviparous Tasmanian scincid lizard (Niveoscincus microlepidotum) suggest a different interpretation. Running speeds of gravid female skinks decrease during gestation (as litter mass increases), but this locomotor impairment is due to physiological changes associated with pregnancy, rather than simple physical burdening. Maternal running speeds are unrelated to litter masses, and do not increase in the week after parturition. Females with very large abdominal fat-bodies (due to ad libitum feeding in the laboratory), equivalent in mass to the litter, nonetheless run rapidly. If the locomotor ,costs' of reproduction reflect all-or-none physiological changes associated with pregnancy, then the magnitude of such costs may correlate only weakly with the actual level of reproductive investment. Because life-history models predict that the relationship between fecundity and ,cost' has important evolutionary consequences, our results highlight the need to clarify the causal basis for locomotor impairment in gravid reptiles. [source]


    RECENT ADVANCES IN FERTILIZATION ECOLOGY OF MACROALGAE,

    JOURNAL OF PHYCOLOGY, Issue 1 2002
    Bernabé SantelicesArticle first published online: 19 FEB 200
    Our understanding of natural patterns of fertilization in seaweeds has increased substantially over the last 10 years due to new approaches and methods to characterize the nature and frequency of fertilization processes in situ, to recognize the conditions and mechanisms enhancing fertilization success, and to anticipate population and community consequences of the patterns of natural fertilization. Successful reproduction in many species depends on a delicate juxtaposition of abiotic and biotic conditions. Important abiotic factors are those triggering gamete release (e.g. single or interacting effects of light quality and water movement) and those affecting gamete viability or concentrations (e.g. salinity effects on polyspermy blocks; gamete dilution due to water movement). Examples of important biotic components are synchronous gamete release, efficiency of polyspermy-blocking mechanisms, population density of sexually fertile thalli, interparent distances, and male-to-female ratios. Field data indicate fertilization frequencies of 70%,100% in broadcasting-type seaweeds (e.g. fucoids) and 30%,80% in brooding-type (red) algae. Red algal values are higher than previously thought and challenge presently accepted explanations for their complex life histories. Important population and community questions raised by the recent findings relate to the magnitude of gene flow and exchange occurring in many micropopulations that seemingly breed during periods of isolation, the physiological basis and population effects of male-to-male competition and sexual selection during fertilization of brooding seaweeds, and the effects of massive gamete release, especially in holocarpic seaweeds, on benthic and planktonic communities. Comparative studies in other algal groups are now needed to test the generality of the above patterns, to provide critical pieces of information still missing in our understanding of natural fertilization processes, and to elucidate the evolutionary consequences of the different modes of reproduction (e.g. brooders vs. broadcasters). [source]


    Genetic effective size, Ne, tracks density in a small freshwater cyprinid, Pecos bluntnose shiner (Notropis simus pecosensis)

    MOLECULAR ECOLOGY, Issue 14 2010
    MEGAN J. OSBORNE
    Abstract Genetic monitoring tracks changes in measures of diversity including allelic richness, heterozygosity and genetic effective size over time, and has emerged as an important tool for understanding evolutionary consequences of population management. One proposed application of genetic monitoring has been to estimate abundance and its trajectory through time. Here, genetic monitoring was conducted across five consecutive year for the Pecos bluntnose shiner, a federally threatened minnow. Temporal changes in allele frequencies at seven microsatellite DNA loci were used to estimate variance effective size (NeV) across adjacent years in the time series. Likewise, effective size was computed using the linkage disequilibrium method (NeD) for each sample. Estimates of Ne were then compared to estimates of adult fish density obtained from traditional demographic monitoring. For Pecos bluntnose shiner, density (catch-per-unit-effort), NeV and NeD were positively associated across this time series. Results for Pecos bluntnose shiner were compared to a related and ecologically similar species, the Rio Grande silvery minnow. In this species, density and NeV were negatively associated, which suggested decoupling of abundance and effective size trajectories. Conversely, density and NeD were positively associated. For Rio Grande silvery minnow, discrepancies among estimates of Ne and their relationships with adult fish density could be related to effects of high variance in reproductive success in the wild and/or effects of supplementation of the wild population with captive-bred and reared fish. The efficacy of Ne as a predictor of density and abundance may depend on intrinsic population dynamics of the species and how these dynamics are influenced by the landscape features, management protocols and other factors. [source]


    INVITED REVIEW: Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances

    MOLECULAR ECOLOGY, Issue 10 2004
    VINCENT CASTRIC
    Abstract Self-incompatibility systems in plants are genetic systems that prevent self-fertilization in hermaphrodites through recognition and rejection of pollen expressing the same allelic specificity as that expressed in the pistils. The evolutionary properties of these self-recognition systems have been revealed through a fascinating interplay between empirical advances and theoretical developments. In 1939, Wright suggested that the main evolutionary force driving the genetic and molecular properties of these systems was strong negative frequency-dependent selection acting on pollination success. The empirical observation of high allelic diversity at the self-incompatibility locus in several species, followed by the discovery of very high molecular divergence among alleles in all plant families where the locus has been identified, supported Wright's initial theoretical predictions as well as many of its later developments. In the last decade, however, advances in the molecular characterization of the incompatibility reaction and in the analysis of allelic frequencies and allelic divergence from natural populations have stimulated new theoretical investigations that challenged some important assumptions of Wright's model of gametophytic self-incompatibility. We here review some of these recent empirical and theoretical advances that investigated: (i) the hypothesis that S -alleles are selectively equivalent, and the evolutionary consequences of genetic interactions between alleles; (ii) the occurrence of frequency-dependent selection in female fertility; (iii) the evolutionary genetics of self-incompatibility systems in subdivided populations; (iv) the evolutionary implications of the self-incompatibility locus's genetic architecture; and (v) of its interactions with the genomic environment. [source]


    Evolutionary consequences of autopolyploidy

    NEW PHYTOLOGIST, Issue 1 2010
    Christian Parisod
    Summary Autopolyploidy is more common in plants than traditionally assumed, but has received little attention compared with allopolyploidy. Hence, the advantages and disadvantages of genome doubling per se compared with genome doubling coupled with hybridizations in allopolyploids remain unclear. Autopolyploids are characterized by genomic redundancy and polysomic inheritance, increasing effective population size. To shed light on the evolutionary consequences of autopolyploidy, we review a broad range of studies focusing on both synthetic and natural autopolyploids encompassing levels of biological organization from genes to evolutionary lineages. The limited evidence currently available suggests that autopolyploids neither experience strong genome restructuring nor wide reorganization of gene expression during the first generations following genome doubling, but that these processes may become more important in the longer term. Biogeographic and ecological surveys point to an association between the formation of autopolyploid lineages and environmental change. We thus hypothesize that polysomic inheritance may provide a short-term evolutionary advantage for autopolyploids compared to diploid relatives when environmental change enforces range shifts. In addition, autopolyploids should possess increased genome flexibility, allowing them to adapt and persist across heterogeneous landscapes in the long run. [source]


    Predicting evolutionary consequences of pollinator declines: the long and short of floral evolution

    NEW PHYTOLOGIST, Issue 3 2008
    Randall J. Mitchell
    First page of article [source]


    Factors related to the inter-annual variation in plants' pollination generalization levels within a community

    OIKOS, Issue 5 2010
    Amparo Lázaro
    The number of pollinators of a plant species is considered a measure of its ecological generalization and may have important evolutionary and ecological implications. Many pollination studies report inter-annual fluctuations in the composition of pollinators to particular species. However, the factors causing such variation are still poorly understood. Here we investigate how flowering duration and plant and pollinator assemblages influenced the inter-annual changes in the functional generalization level of the 20 most common plant species of a semi-natural meadow in southern Norway. We also studied the extent to which changes in generalization levels were controlled by flower-shape and flowering time. Large inter-annual changes in generalization levels were common and there was no relationship between the generalization level one year and the following. Generalization level of particular plant species increased with flowering duration, sampling effort, and the abundance of managed honeybees in the community. Generalization level decreased with the flowering synchrony between the focal plant species and the rest of the plant community and with the focal species' own abundance, which we attribute to inter-specific competition for pollinator attraction and foraging decisions made by pollinators. Plants with different flower-shapes and flowering times did not differ in the extent of inter-annual variation in generalization levels. Most studies do not consider the effect of the plant community on the generalization level of particular plant species. We show here that both pollinator and plant assemblages can affect the inter-annual variation in generalization levels of plant species. Studies like ours will help to understand how pollination interactions are structured at the community level, and the ecological and evolutionary consequences that these inter-annual changes in generalization levels may have. [source]


    Context-dependency of a complex fruit,frugivore mutualism: temporal variation in crop size and neighborhood effects

    OIKOS, Issue 3 2010
    Soumya Prasad
    The quantity of fruit consumed by dispersers is highly variable among individuals within plant populations. The outcome of such selection operated by frugivores has been examined mostly with respect to changing spatial contexts. The influence of varying temporal contexts on frugivore choice, and their possible demographic and evolutionary consequences is poorly understood. We examined if temporal variation in fruit availability across a hierarchy of nested temporal levels (interannual, intraseasonal, 120 h, 24 h) altered frugivore choice for a complex seed dispersal system in dry tropical forests of southern India. The interactions between Phyllanthus emblica and its primary disperser (ruminants) was mediated by another frugivore (a primate), which made large quantities of fruit available on the ground to ruminants. The direction and strength of crop size and neighborhood effects on this interaction varied with changing temporal contexts. Fruit availability was higher in the first of the two study years, and at the start of the season in both years. Fruit persistence on trees, determined by primate foraging, was influenced by crop size and conspecific neighborhood densities only in the high fruit availability year. Fruit removal by ruminants was influenced by crop size in both years and neighborhood densities only in the high availability year. In both years, these effects were stronger at the start of the season. Intraseasonal reduction in fruit availability diminished inequalities in fruit removal by ruminants and the influence of crop size and fruiting neighborhoods. All trees were not equally attractive to frugivores in a P. emblica population at all points of time. Temporal asymmetry in frugivore-mediated selection could reduce potential for co-evolution between frugivores and plants by diluting selective pressures. Inter-dependencies formed between disparate animal consumers can add additional levels of complexity to plant,frugivore mutualistic networks and have potential reproductive consequences for specific individuals within populations. [source]


    Mobile DNA elements in primate and human evolution

    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue S45 2007
    Jinchuan Xing
    Abstract Roughly 50% of the primate genome consists of mobile, repetitive DNA sequences such as Alu and LINE1 elements. The causes and evolutionary consequences of mobile element insertion, which have received considerable attention during the past decade, are reviewed in this article. Because of their unique mutational mechanisms, these elements are highly useful for answering phylogenetic questions. We demonstrate how they have been used to help resolve a number of questions in primate phylogeny, including the human,chimpanzee,gorilla trichotomy and New World primate phylogeny. Alu and LINE1 element insertion polymorphisms have also been analyzed in human populations to test hypotheses about human evolution and population affinities and to address forensic issues. Finally, these elements have had impacts on the genome itself. We review how they have influenced fundamental ongoing processes like nonhomologous recombination, genomic deletion, and X chromosome inactivation. Yrbk Phys Anthropol 50:2,19, 2007. © 2007 Wiley-Liss, Inc. [source]


    Evolution at the host,retrovirus interface

    BIOESSAYS, Issue 12 2006
    Robert J. Gifford
    Retroviruses are unusual amongst animal viruses in their capacity to integrate into host genomes and be transmitted vertically to host progeny. Vertebrate genomes contain numerous and diverse retrovirus-derived sequences reflecting a long co-evolutionary history during which genome invasion has occurred repeatedly, with wide-ranging evolutionary consequences. Over the past 10 years, a detailed picture of retroviral diversity throughout vertebrate genomes has emerged, revealing striking and informative patterns that differ markedly across species. The power of these data to deliver far-reaching insights into the biology and evolution of retroviruses has been significantly advanced by recent studies identifying ongoing genome invasion in wild populations,(1) and by the characterisation of conserved mechanisms of innate antiretroviral defence.(2,3) BioEssays 28: 1153,1156, 2006. © 2006 Wiley Periodicals, Inc. [source]