Home About us Contact | |||
Evaporative Water Loss (evaporative + water_loss)
Selected AbstractsAn Experimental Investigation of Landscape Resistance of Forest versus Old-Field Habitats to Emigrating Juvenile AmphibiansCONSERVATION BIOLOGY, Issue 5 2002Betsie B. Rothermel Larval amphibians,spotted salamander (Ambystoma maculatum), small-mouthed salamander (A. texanum), and American toad ( Bufo americanus ),were added to artificial pools in four dispersal arrays on forest edges. Each array consisted of a pool surrounded by a circular drift fence with pitfall traps and two 2.5 × 50 m enclosures (runs) extending into forest and old-field habitat. Juveniles captured at the circular fences were individually marked and released into either field or forest runs. We determined initial distance, initial rate, total distance, and net distance moved by juveniles in the field versus forest from recaptures in the runs. We also conducted 24-hour dehydration trials to compare the rates of evaporative water loss by spotted and small-mouthed salamanders in field and forest. Initial orientation of spotted salamanders and toads was significantly biased toward forest. Orientation of small-mouthed salamanders did not differ significantly from random expectations. The avoidance of open-canopy habitat by juvenile American toads in particular indicates that predictions of dispersal behavior based on adult habitat use may be misleading. Spotted salamanders moved almost four times farther and toads more than three times farther into the forest than into the field, and recapture rates of both species were much lower in the field. We attribute the lower recapture rates and shorter distances moved in the field to higher mortality due to desiccation or an abundance of predators. Juvenile spotted and small-mouthed salamanders experienced greater evaporative water loss in the field. Our data on movement behavior and dehydration rates suggest that old-field habitats offer greater landscape resistance to dispersing juveniles of some species. Thus, forest fragmentation is likely to reduce dispersal rates between local populations of these three species, with potentially negative consequences for population persistence in altered landscapes. Resumen: Utilizamos un enfoque experimental para investigar los efectos de la composición del paisaje sobre el éxito inicial de dispersión de anfibios juveniles. Colcamos larvas de anfibios (salamandras manchadas [Ambystoma maculatum] y A. texanum y sapo americano [Bufo americanus] ) en estanques artificiales en cuatro secuencias de dispersión en bordes de bosque. Cada secuencia consistió de un estanque rodeado por un cerco circular con trampas de fosa y dos encierros (corridas) de 2.5 × 50 m que se extendían hacia el hábitat de bosque y de campo viejo. Los juveniles capturados en los cercos circulares fueron marcados individualmente y liberados en las corridas de bosque o de campo. A partir de recapturas en las corridas, determinamos la distancia inicial, la tasa inicial, las distancia total y la distancia neta recorrida por juveniles en el campo versus el bosque. También realizamos pruebas de deshidratación de 24 horas para comparar las tasas de pérdida de agua por evaporación en salamandras en el campo y el bosque. La orientación inicial de Ambystoma maculatum y Bufo americanus estuvo significativamente sesgada hacia el bosque. La orientación inicial de A. texanum no fue significativamente diferente de las expectativas aleatorias. La evasión del hábitat abierto en particular por juveniles de sapo americano indica que las predicciones del comportamiento de dispersión basadas en el uso del hábitat por adultos pueden llevar a conclusiones erróneas. Las salamandras manchadas se movieron cuatro veces mas lejos y los sapos más de tres veces más lejos dentro del bosque que dentro del campo, y las tasas de recaptura de ambas especies fueron mucho menores en el campo. Atribuimos las bajas tasas de recaptura y las distancias menores a la mayor mortalidad debido a la desecación o a la abundancia de depredadores. Los juveniles de las dos especies de salamandras experimentaron mayor pérdida de agua por evaporación en los campos. Nuestros datos del comportamiento de movimiento y las tasas de deshidratación sugieren que los hábitats de campo viejo ofrecen mayor resistencia de paisaje para los juveniles dispersantes de algunas especies. Por tanto, es probable que la fragmentación de bosques reduce las tasas de dispersión entre poblaciones locales de estas tres especies, con consecuencias potencialmente negativas para la persistencia de la población en paisajes alterados. [source] Non-equilibrium water flow characterized by means of upward infiltration experimentsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2001Summary Upward infiltration experiments under tension were used to demonstrate the presence of non-equilibrium flow in soils, the phenomenon that has important implications for the accelerated movement of fertilizers, pesticides, non-aqueous liquids, and other pollutants. Data obtained from these experiments were analysed using the single-porosity Richards equation, as well as a variably saturated, dual-porosity model and a dual-permeability model for characterizing non-equilibrium water flow. The laboratory experiments were carried out on 0.10-m-long soil cores having an internal diameter of 0.10 m. Constant pressure heads of ,0.10 and ,0.01 m were used as the lower boundary condition. Each infiltration was followed by a single-rate evaporation experiment to re-establish initial conditions, and to obtain the drying soil hydraulic properties. Pressure heads inside the cores were measured using five tensiometers, while evaporative water loss from the top was determined by weighing the soil samples. The data were analysed to estimate parameters using a technique that combined a numerical solution of the governing flow equation (as implemented in a modified version of the Hydrus-1D software) with a Marquardt,Levenberg optimization. The objective function for the parameter estimation was defined in terms of pressure head readings, the cumulative infiltration rate, and the final total water volume in the core during upward infiltration. The final total water volume was used, as well as the pressure head readings during the evaporation part. Analysis of flow responses obtained during the infiltration experiment demonstrated significant non-equilibrium flow. This behaviour could be well characterized using a model of physical non-equilibrium that divides the medium into inter- and intra-aggregate pores with first-order transfer of water between the two systems. The analysis also demonstrated the importance of hysteresis. [source] Raised thermoregulatory costs at exposed song posts increase the energetic cost of singing for willow warblers Phylloscopus trochilusJOURNAL OF AVIAN BIOLOGY, Issue 4 2005Sally Ward Sexually selected displays, such as bird song, are expected to be costly. We examined a novel potential cost to bird song: whether a less favourable microclimate at exposed song posts would be predicted to raise metabolic rate. We measured the microclimate and height at which willow warblers Phylloscopus trochilus sang and foraged. Song posts were higher than foraging sites. The wind speed was 0.6±0.3 ms,1 greater at song posts (mean±SD, N=12 birds). Song rate and song post selection were not influenced consistently by temperature or wind speed, but the birds sang from lower positions on one particularly windy day. This may have resulted from difficulty in holding on to exposed branches in windy conditions rather than a thermoregulatory constraint. The results suggest that the extra thermoregulatory costs at song posts would increase metabolic rate by an average of 10±4% and a maximum of 25±8% (N=12 birds) relative to birds singing at foraging sites. We estimated that metabolic rate would be 3,8% greater during singing than during quiet respiration because of heat and evaporative water loss in exhaled gases. The combined energy requirements for sound production, thermoregulation at exposed song posts and additional heat loss in exhaled air could increase the metabolic rate of willow warblers by an average of 14,23%, and a maximum of 42,63%, during singing. The energetic cost of singing may thus be much greater for birds in a cold, windy environment than for birds singing in laboratory conditions. [source] The impact of obesity on skin disease and epidermal permeability barrier statusJOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 2 2010B Guida Abstract Background, Obese subjects frequently show skin diseases. However, less attention has been paid to the impact of obesity on skin disorders until now. Objective, The purposes of this study are: to highlight the incidence of some dermatoses in obese subjects and to study the water barrier function of the obese skin using transepidermal water loss (TEWL). Methods, Sixty obese subjects and 20 normal weight volunteers were recruited. Obese group was further divided into three body mass index (BMI) classes: class I (BMI 30,34.9 kg/m2), class II (BMI 35,39.9 kg/m2) and class III (BMI 40 g/m2). All subjects attended dermatological examination for skin diseases. To assess barrier function, TEWL measurements were performed on the volar surface of the forearm using a tewameter. Results, The results of this study showed that: (i) obese subjects show a higher incidence of some dermatoses compared with normal-weight controls; in addition the dermatoses are more, frequent as BMI increases; (ii) the rate of TEWL is lower in obese subjects, than in the normal-weight subjects, particularly in patients with intra-abdominal obesity. Conclusion, Specific dermatoses as skin tags, striae distensae and plantar hyperkeratosis, could be considered as a cutaneous stigma of severe obesity. The low permeability of the skin to evaporative water loss is observed in obese subjects compared with normal weight control. Although the physiological mechanisms are still unknown, this finding has not been previously described and we believe that this may constitute a new field in the research on obesity. [source] |