Home About us Contact | |||
Evaporation Process (evaporation + process)
Selected AbstractsThe 11 August 2006 squall-line system as observed from MIT Doppler radar during the AMMA SOPTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue S1 2010Michel Chong Abstract On the evening of 9 August 2006, a mesoscale convective system (MCS) having a north-south oriented squall-line organization formed over the border between Chad and Nigeria. It propagated westward, intensified over Nigeria on 10 August, and reached Niamey (Niger) at 0320 UTC on 11 August. Its passage over Niamey was accompanied by dust lifting and was well tracked by the Massachusetts Institute of Technology (MIT) Doppler radar. The three-dimensional structure of the airflow and precipitation pattern is investigated from regular radar volume scans performed every ten minutes between 0200 and 0321 UTC. The 3D wind components are deduced from the multiple-Doppler synthesis and continuity adjustment technique (MUSCAT) applied to a set of three volume scans obtained over a time period of one hour, which are equivalent to a three-radar observation of the squall line when considering a reference frame moving with the system and the hypothesis of a stationary field. Results of the wind synthesis reveal several features commonly observed in tropical squall lines, such as the deep convective cells in front of the system, fed by the monsoon air and extending up to 15 km altitude, and the well-marked stratiform rain region at the rear, associated with mesoscale vertical motions. Forward and trailing anvils are clearly identified as resulting from the outflow of air reaching the tropopause and transported to this level by the sloping convective updraughts occurring in a sheared environment. In the northern part, a deeper and stronger front-to-rear flow at mid-levels is found to contribute to the rearward deflection of the leading line and to promote a broader (over 300 km) stratiform cloud region. Eddy vertical transports of the cross-line momentum mainly accounts for the mid-level flow acceleration due to a momentum redistribution from low to higher levels. The height distribution of hydrometeors and their associated production terms derived from a one-dimensional microphysical retrieval model indicate the distinct roles of the convective and stratiform regions in the formation of graupel and rain, and the respective contributions of cold (riming) and warm (coalescence, melting) processes. Cooling from melting, and heating/cooling from condensation/evaporation processes yield a net decrease and increase of the potential temperature at low and mid-to-upper levels, respectively, with respect to an environmental thermodynamic profile taken three hours ahead of the analysis. Finally, the upper-level rearward flow could convey the non-negligible proportion of ice particles farther from the leading deep convection to the trailing stratiform region, thereby favouring the extent of this region. Copyright © 2009 Royal Meteorological Society [source] Optimization of a single-effect evaporation system to effectively utilize thermal energyENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 2 2009Raafat Alnaizy Abstract Wastewater treatment facilities at Emirates Gold in Dubai seek to improve the steam economy of the existing single-effect with recirculation and vapor-compression evaporation process. Maximizing steam economy is important as it impacts treatment costs. There are two main approaches for improving steam economy in evaporators. One is to use a multiple-effect evaporator; the other is to use a mechanical vapor recompression. Multiple-effect evaporators were rejected because of higher capital and power cost. One of the suggestions that were made towards improving the steam economy was to recover heat from the steam condensate. A modified process flow diagram was proposed and investigated. The modified process was simulated using SuperPro Designer and Hysys with complete material and energy balance computation. The modified process increased the total water evaporation capacity and gained 40% better steam economy of the process. Another advantage was an increase in the amount of water reused, which is both economical and environmentally friendly. © 2008 American Institute of Chemical Engineers Environ Prog, 2009 [source] A Controllable Self-Assembly Method for Large-Scale Synthesis of Graphene Sponges and Free-Standing Graphene FilmsADVANCED FUNCTIONAL MATERIALS, Issue 12 2010Fei Liu Abstract A simple method to prepare large-scale graphene sponges and free-standing graphene films using a speed vacuum concentrator is presented. During the centrifugal evaporation process, the graphene oxide (GO) sheets in the aqueous suspension are assembled to generate network-linked GO sponges or a series of multilayer GO films, depending on the temperature of a centrifugal vacuum chamber. While sponge-like bulk GO materials (GO sponges) are produced at 40,°C, uniform free-standing GO films of size up to 9,cm2 are generated at 80,°C. The thickness of GO films can be controlled from 200,nm to 1,µm based on the concentration of the GO colloidal suspension and evaporation temperature. The synthesized GO films exhibit excellent transparency, typical fluorescent emission signal, and high flexibility with a smooth surface and condensed density. Reduced GO sponges and films with less than 5,wt% oxygen are produced through a thermal annealing process at 800,°C with H2/Ar flow. The structural flexibility of the reduced GO sponges, which have a highly porous, interconnected, 3D network, as well as excellent electrochemical properties of the reduced GO film with respect to electrode kinetics for the [Fe(CN)6]3,/4, redox system, are demonstrated. [source] Morphology-Tunable Micro/Nanostructures: Characterization, Cathodoluminescence, and Field-Emission Properties of Morphology-Tunable CdS Micro/Nanostructures (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009Mater. On page 2423, T. Y. Zhai et al. report that high quality and uniform 1D CdS micro/nanostructures with different morphologies can be fabricated through a simple and effective thermal evaporation process. Both cathodoluminescence and field-emission measurements are made and clear correlations between morphology, structure, and optical and field emission performance are established. [source] Characterization, Cathodoluminescence, and Field-Emission Properties of Morphology-Tunable CdS Micro/NanostructuresADVANCED FUNCTIONAL MATERIALS, Issue 15 2009Tianyou Zhai Abstract High-quality, uniform one-dimensional CdS micro/nanostructures with different morphologies,microrods, sub-microwires and nanotips,are fabricated through an easy and effective thermal evaporation process. Their structural, cathodoluminescence and field-emission properties are systematically investigated. Microrods and nanotips exhibit sharp near-band-edge emission and broad deep-level emission, whereas sub-microwires show only the deep-level emission. A significant decrease in a deep-level/near-band-edge intensity ratio is observed along a tapered nanotip towards a smaller diameter part. This behavior is understood by consideration of defect concentrations in the nanotips, as analyzed with high-resolution transmission electron microscopy. Field-emission measurements show that the nanotips possess the best field-emission characteristics among all 1D CdS nanostructures reported to date, with a relatively low turn-on field of 5.28,V µm,1 and the highest field-enhancement factor of 4,819. The field-enhancement factor, turn-on and threshold fields are discussed related to structure morphology and vacuum gap variations under emission. [source] Large-Scale Synthesis of Long Crystalline Cu2-xSe Nanowire Bundles by Water-Evaporation-Induced Self-Assembly and Their Application in Gas SensingADVANCED FUNCTIONAL MATERIALS, Issue 11 2009Jun Xu Abstract By a facile water evaporation process without adding any directing agent, Cu2-xSe nanowire bundles with diameters of 100,300,nm and lengths up to hundreds of micrometers, which comprise crystalline nanowires with diameters of 5,8,nm, are obtained. Experiments reveal the initial formation/stacking of CuSe nanoplates and the subsequent transformation to the Cu2-xSe nanowire bundles. A water-evaporation-induced self-assembly (WEISA) mechanism is proposed, which highlights the driving force of evaporation in promoting the nanoplate stacking, CuSe-to-Cu2-xSe transformation and the growth/bundling of the Cu2-xSe nanowires. The simplicity, benignancy, scalability, and high-yield of the synthesis of this important nanowire material herald its numerous applications. As one example, the use of the Cu2-xSe nanowire bundles as a photoluminescence-type sensor of humidity is demonstrated, which shows good sensitivity, ideal linearity, quick response/recovery and long lifetime in a very wide humidity range at room temperature. [source] Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networksHYDROLOGICAL PROCESSES, Issue 2 2009Özgür Ki Abstract This paper reports on investigations of the abilities of three different artificial neural network (ANN) techniques, multi-layer perceptrons (MLP), radial basis neural networks (RBNN) and generalized regression neural networks (GRNN) to estimate daily pan evaporation. Different MLP models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity were developed to evaluate the effect of each of these variables on pan evaporation. The MLP estimates are compared with those of the RBNN and GRNN techniques. The Stephens-Stewart (SS) method is also considered for the comparison. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE) and determination coefficient (R2) statistics. Based on the comparisons, it was found that the MLP and RBNN computing techniques could be employed successfully to model the evaporation process using the available climatic data. The GRNN was found to perform better than the SS method. Copyright © 2008 John Wiley & Sons, Ltd. [source] Thermodynamic study of wet cooling tower performanceINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 6 2006V. D. Papaefthimiou Abstract An analytical model was developed to describe thermodynamically the water evaporation process inside a counter-flow wet cooling tower, where the air stream is in direct contact with the falling water, based on the implementation of the energy and mass balance between air and water stream describing thus, the rate of change of air temperature, humidity ratio, water temperature and evaporated water mass along tower height. The reliability of model predictions was ensured by comparisons made with pertinent experimental data, which were obtained from the literature. The paper elaborated the effect of atmospheric conditions, water mass flow rate and water inlet temperature on the variation of the thermodynamic properties of moist air inside the cooling tower and on its thermal performance characteristics. The analysis of the theoretical results revealed that the thermal performance of the cooling tower is sensitive to the degree of saturation of inlet air. Hence, the cooling capacity of the cooling tower increases with decreasing inlet air wet bulb temperature whereas the overall water temperature fall is curtailed with increasing water to air mass ratio. The change of inlet water temperature does not affect seriously the thermal behaviour of the cooling tower. Copyright © 2005 John Wiley & Sons, Ltd. [source] A study of phase separation in peptide-loaded HPMC films using Tzero -modulated temperature DSC, atomic force microscopy, and scanning electron microscopyJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2004Samana Hussain Abstract Despite the widespread use of drug-loaded polymeric systems, there is still considerable uncertainty with regard to the nature of the distribution of the drug within the polymer matrix. The aim of this investigation was to develop thermal and microscopic techniques whereby the miscibility and spatial distribution of a model peptide, cyclosporin A (CyA), in hydroxypropyl methylcellulose (HPMC) films may be studied. The new technique of Tzero -modulated temperature differential scanning calorimetry (Tzero MTDSC), scanning electron microscopy (SEM), and pulse force mode atomic force microscopy (PFM-AFM) were used in conjunction to study films prepared using a solvent evaporation process, with a solvent extraction study performed to elucidate the nature of the observed phases. Tzero MTDSC studies showed glass transitions for both the HPMC and CycA, with the Tg for the HPMC and CycA seen for the mixed systems. SEM showed two spherical phases of differing electron density. PFM-AFM also showed spheres of differing adhesion that increased in size on addition of drug. Pixel intensity analysis indicated that the smaller spheres corresponded to CycA. Exposure of the films to dichloromethane, in which CycA is soluble but HPMC is not, resulted in the presence of voids that corresponded well to the spheres suggested to correspond to the drug. It was concluded that the system had undergone extensive or complete phase separation, and that the thermal and microscopic techniques outlined above are an effective means by which this issue may be studied. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:1672,1681, 2004 [source] A Novel Route for Fabricating Metal-Polymer Composite Nanoparticles with Phase-Separated StructuresMACROMOLECULAR RAPID COMMUNICATIONS, Issue 14 2010Hiroshi Yabu Abstract Au nanoparticles (NPs) and polymer composite particles with phase-separation structures were prepared based on phase separation structures. Au NPs were successfully synthesized in amphiphilic block-copolymer micelles, and then composite particles were formed by a simple solvent evaporation process from Au NPs and polymer solution. The phase separated structures (Janus and Core-shell) were controlled by changing the combination of polymers having differing hydrophobicity. [source] Gas Phase Modification of Superhard Carbon Coatings Deposited by Pulsed DC-Arc-ProcessPLASMA PROCESSES AND POLYMERS, Issue S1 2009Werner Grimm Abstract The pulsed vacuum arc discharge (pulsed arc) is the most efficient PVD technology for deposition of hard amorphous carbon coatings on tools and machinery parts. Due to the pulsed arc discharge a stable evaporation process and the efficient deposition of hydrogen-free a-C type coatings is possible. This paper shows that the pulsed arc enables the deposition of ta-C and modified a-C coatings with interesting coating properties in a wide pressure range of argon, acetylene and ammonia gas atmosphere. Coatings with different gas flow rates of these gases were deposited on steel substrates. The coating properties were characterized by using different analytical methods for determination of structure, hardness, friction and wear behaviour. The changes of film properties in dependence of the kind and the rate of gas flow are compared and discussed. [source] Influence of initial mixing methods on melt-extruded single-walled carbon nanotube,polypropylene nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 9 2010Vinod K. Radhakrishnan We report the first direct comparison of melt-extruded polypropylene,single-walled carbon nanotube (PP/SWNT) nanocomposites prepared by three different initial mixing methods. The standard deviation of the G-band intensity obtained using Raman mapping was found to be the best measure of dispersion uniformity in the extruded composites, and dispersion uniformity was found to generally correlate with rheological and thermal properties. For all three initial mixing methods, both unmodified and sidewall-functionalized purified SWNTs were evaluated. Surprisingly, in all cases, dodecylated SWNTs prepared using the reductive alkylation method were less uniformly dispersed in the final composite than the unmodified SWNTs. The simplest process, dry blending, resulted in poor nanotube dispersion and only polymer crystallization was significantly affected by the presence of the nanotubes. A slightly more complex rotary evaporation process resulted in significantly more uniform dispersion and significant changes in rheological properties, polymer crystallization, and thermal stability. The most elaborate process tested, hot coagulation, enabled the most uniform dispersion and the greatest change in properties but also resulted in some polymer degradation. POLYM. ENG. SCI., 50:1831,1842, 2010. © 2010 Society of Plastics Engineers [source] |