European Plain (european + plain)

Distribution by Scientific Domains


Selected Abstracts


Geoarchaeology of the Kostenki,Borshchevo sites, Don River Valley, Russia

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 2 2007
Vance T. Holliday
The Kostenki,Borshchevo localities include 26 Upper Paleolithic sites on the first and second terraces along the west bank of the Don River, near Voronezh on the central East European Plain. Geoarchaeological research from 2001 through 2004 focused on sites Kostenki 1, 12, and 14, with additional work at Kostenki 11 and 16, and Borshchevo 5. The strata are grouped into three units (bottom up): Unit 1, > 50 ka, consists of coarse alluvium (representing upper terrace 2 deposits) and colluvium, overlain by fine-grained sediments. Unit 2 includes archaeological horizons sealed within two sets of thin lenses of silt, carbonate, chalk fragments, and organic-rich soils (termed the Lower Humic Bed and Upper Humic Bed) dating 50,30 ka. Separating the humic beds is a volcanic ash lens identified as the Campanian Ignimbrite Y5 tephra, dated elsewhere by Ar/Ar to ca. 40 ka. The humic beds appear to result from the complex interplay of soil formation, spring deposition, slope action, and other processes. Several horizons buried in the lower part of Unit 2 contain Upper Paleolithic assemblages. The springs and seeps, which are still present in the area today, emanated from the bedrock valley wall. Their presence may account for the unusually high concentration of Upper Paleolithic sites in this part of the central East European Plain. Unit 3, < 30 ka, contains redeposited loess with a buried soil (Gmelin Soil) overlain by a primary full-glacial loess with an associated Chernozem (Mollisol), forming the surface of the second terrace. © 2007 Wiley Periodicals, Inc. [source]


Spring northward retreat of Eurasian snow cover relevant to seasonal and interannual variations of atmospheric circulation

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 6 2003
Hiroaki Ueda
Abstract An observational study is made of the seasonal and interannual variations of spring snow-disappearance over the Eurasian continent and the circulation mechanisms causing those variations. The spring northward retreat of the snow boundary over the East European Plain (EEP) between 30 and 60° E is faster (0.4° per day) than to the east of the Ural Mountain range (0.3° per day). These migrations of the snow boundary lag behind the appearance of the surface air temperature 0 °C by about 1 to 5 pentads. The analyses of the atmospheric heat and moisture budgets showed that the seasonal intrusion of warm air associated with southwesterly winds is primarily responsible for the rapid snowmelt in March and April over the EEP. In addition, the adiabatic heating of descending air plays a secondary role in the snowmelt in mid-March. On an interannual time scale, horizontal warm advection also plays an essential role in the spring northward retreat of snow cover extent. The present study confirms the previous finding that the surface air temperature anomalies, produced during the seasonal snow-disappearance period, diminished in May, suggesting a weak dynamical linkage between the EEP snow cover and Asian summer monsoon. Copyright © 2003 Royal Meteorological Society [source]


Winter snow depth variability over northern Eurasia in relation to recent atmospheric circulation changes

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 13 2007
V. Popova
Abstract Mean snow depth time-series for February (1936,2001) over northern Eurasia (incl. Norway, Finland and the former USSR), interpolated into 5 × 5° grid points, are studied using empirical orthogonal function (EOF) analysis. First, five statistically significant rotated PCs are correlated to Northern Hemisphere (NH) teleconnection patterns at the 700 hPa height: North Atlantic Oscillation (NAO), Polar-Eurasia (Pol), Pacific-North American (PNA), West Pacific (WP), and Scandinavia (Scand). The impact of the NH circulation modes on snow depth variations is evaluated using the multiple stepwise backward regression (MSBR). Analyses of the snow depth PCs indicate that within the northern Eurasia territory, there are several regions with snow accumulation, respondent to certain circulation modes. PC1 describes low-frequency snow depth variation to the north from 55 to 60°N between the White Sea and the Lena river basin, and is positively correlated with NAO and negatively,with Scand. MSBR shows that in 1951,1974 the leading role in snow depth variability belongs to Scand. After 1975, Scand has passed over the leading role to NAO. Scand and NAO are also responsible for the surface air temperature changes over the northern Eurasia. Snow depth PC1 and wintertime temperature are closely related to each other. PC2 describes quasi-decadal snow depth variability over eastern Europe and is negatively correlated with NAO. For the Baltic and White Sea coasts, Fennoscandia, and the center of the East European plain, decrease of snow accumulation, related to a positive NAO phase, seems to be caused by mild winters. For the southwestern and central regions of eastern Europe, negative snow depth anomalies could also be caused by decrease of precipitation associated with the eastward shift of cyclone tracks related to the positive NAO phase. Two regions, where snow depth variations are described by PC1 and PC2, respectively, reveal the border between the opposite recent tendencies of snow accumulation. Copyright © 2007 Royal Meteorological Society [source]


Dating the introduction of cereal cultivation to the British Isles: early palaeoecological evidence from the Isle of Man

JOURNAL OF QUATERNARY SCIENCE, Issue 7 2003
James B. Innes
Abstract The adoption of cereal cultivation is a key benchmark in the transition from Mesolithic hunter,gatherer foraging to Neolithic farming economies, but the nature, timing and ecological,cultural context of the earliest cereal use in the British Isles and northwest Europe is still uncertain. We present AMS radiocarbon dating and fine-resolution pollen evidence from the Isle of Man for cereal growing in the latter stages of a distinct episode of forest disturbance at almost 6000,yr,BP (uncalibrated). The coherent ecological structure of this phase at the fine resolution level suggests that it records cereal cultivation well before the Ulmus decline, rather than wild grass pollen grains. This example is one of a cluster of early dates for cereal-type pollen near the start of the sixth millenium BP, including several around the Irish Sea, which indicate that the introduction of cereal agriculture probably occurred as early in the central British Isles as in the northern European plain. This early cereal phase is followed later by a probable phase of pre- Ulmus decline pastoral activity. We also report Mesolithic age woodland disturbance around 7000,yr,BP (uncalibrated) and the first radiocarbon dates for mid-Holocene forest history of the Isle of Man. Copyright © 2003 John Wiley & Sons, Ltd. [source]