Ethylene-vinyl Acetate Copolymer (ethylene-vinyl + acetate_copolymer)

Distribution by Scientific Domains


Selected Abstracts


Compatible blends of ethylene-vinyl acetate copolymer and hydrogenated nitrile rubber

ADVANCES IN POLYMER TECHNOLOGY, Issue 1 2004
P. Thavamani
Abstract The miscibility and some physico-mechanical characteristics of ethylene vinyl acetate (EVA) copolymer and hydrogenated nitrile rubber (HNBR) have been investigated using differential scanning calorimetry, dynamic mechanical and thermal analysis, and electrical conductivity. EVA was found to be miscible with HNBR at all properties. Infrared spectroscopic studies revealed that there is some chemical interaction between the constituent polymers. Scanning electron microscopic observations on the morphology of preferential solvent extracted samples indicated that in the blend the major constituent forms a continuous matrix in which the minor one is dispersed. At equal proportions, both EVA and HNBR exist as discontinuous phase. Variation of strength properties with blend composition is also discussed. © 2004 Wiley Periodicals, Inc. Adv Polym Techn 23: 5,17, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.10066 [source]


Preparation and properties of dynamically cured PP/MAH- g -EVA/epoxy blends

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2009
Xueliang Jiang
Abstract A method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin with 2-ethylene-4-methane-imidazole (EMI-2,4) was successfully applied in the PP/maleic anhydride-grafted ethylene-vinyl acetate copolymer (MAH- g -EVA), and the obtained blends named as dynamically cured PP/MAH- g -EVA/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of epoxy particle in the PP/MAH- g -EVA/epoxy blends shows that MAH- g -EVA was also used as a compatibilizer. The structure of the dynamically cured PP/MAH- g -EVA/epoxy blends is the embedding of the epoxy particles by the MAH- g -EVA. The cured epoxy particles as organic filler increases the stiffness of the PP/MAH- g -EVA blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing the epoxy resin content, and the impact strength reaches a maximum of 258 J/m at the epoxy resin content of 10 wt %. DSC analysis shows that the epoxy particles in the dynamically cured PP/MAH- g -EVA/epoxy blends could have contained embedded MAH- g -EVA, decreasing the nucleating effect of the epoxy resin. Thermogravimetric results show the addition of epoxy resin could improve the thermal stability of PP, the dynamically cured PP/MAH- g -EVA/epoxy stability compared with the pure PP. Wide-angle x-ray diffraction analysis shows that the dynamical cure and compatibilization do not disturb the crystalline structure of PP in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


Effect of ATH content on electrical and aging properties of EVA and silicone rubber blends for high voltage insulator compound

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007
M. A. Pradeep
Abstract The effect of trihydrated alumina (Al2O3, 3H2O) (ATH) filler in ethylene-vinyl acetate copolymer (EVA) and silicone rubber blends was investigated by performing a series of laboratory experiments to simulate different natural aging conditions. Samples with varying ATH content in a 50-50 blend of EVA and polydimethylsiloxane (PDMS) (silicone rubber, MQ) were tested to investigate the tracking resistance, resistance to UV radiation, corona, heat, and water immersion. Changes in surface resistivity, volume resistivity, and hydrophobic characteristics were evaluated for different compounds having ATH content. These exercises were mainly carried out to optimize the filler level. In immersed condition the water absorption increases with ATH content. The recovery of hydrophobicity, after aging by heat, is appreciable at higher ATH levels, than at lower ATH levels. The tracking and erosion resistance decrease as ATH content increases. When compounds containing different ATH content were subjected to corona treatment, the samples with higher ATH levels exhibited better results. All samples changed their color to a darker shade and there was an increase in the hydrophobicity, when subjected to UV radiation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3505,3516, 2007 [source]


Effect of dispersion state of organoclay on cellular foam structure and mechanical properties of ethylene vinyl acetate copolymer/ethylene-1-butenecopolymer/organoclay nanocomposite foams

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007
Keun-Wan Park
Abstract In this study, our goal is to obtain lower density of ethylene-vinyl acetate copolymer (EVA)/ethylene-1-butene copolymer (EtBC) foams without sacrificing mechanical properties. For this purpose EVA/EtBC/organoclay (Cloisite 15A, Closite 30B) nanocomposite foams were prepared. To investigate the effect of compatibilizer on the dispersion state of organoclay in cellular foam structure and mechanical properties of the EVA/EtBC/organoclay foams composites were prepared with and without maleic anhydride grafted EtBC (EtBC-g-MAH). The dispersion of organoclay in EVA/EtBC/organocaly foams was investigated by X-ray diffraction and transmission electron microscopy. The EVA/EtBC nanocomposite foamswith the compatibilzer, especially EVA/EtBC/Cloisite 15A/EtBC-g-MAH foams displayed more uniform dispersion of organoclay than EVA/EtBC nanocomposite foams without the compatibilzer. As a result, EVA/EtBC/Cloisite 15A/EtBC-g-MAH foams have the smallest average cell size and highest 100% tensile modulus followed by EVA/EtBC/Cloisite 30B/EtBC-g-MAH foams. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3879,3885, 2007 [source]


Tailoring viscoelastic and mechanical properties of the foamed blends of EVA and various ethylene-styrene interpolymers

POLYMER COMPOSITES, Issue 3 2003
I-Chun Liu
Foamed materials (EVA/ESI) have been prepared from blends of ethylene-vinyl acetate copolymer (EVA) and ethylene-styrene interpolymers (ESI) in the presence of various amounts of dicumyl peroxide (DCP). Four ESIs of different compositions were employed in this study; their styrene contents ranged from 30 to 73 wt% and their Tg ranged from ,2 to 33°C. It has been found that microcellular morphology, degree of crosslinking and expansion ratio were strongly affected by the DCP concentration and the type of ESI employed. A minimum degree of crosslinking was required for making good foams and the same degree of crosslinking could be achieved by employing a smaller amount of DCP for an EVA/ESI blend having a higher styrene content. In contrast to other EVA blends, such as EVA/LDPE, these EVA/ESI blends exhibited no existence of any optimum DCP concentration, and the , glass transition temperatures of the foams varied with the ESI type, covering a wide span from 0°C to 37°C. Therefore, it was possible to tailor the Tg of an EVA/ESI blend by choosing an appropriate type of ESI. Furthermore, by correctly tailoring the Tg, the EVA/ESI foam could be made into a rubbery material with a custom-designed damping factor. Tensile strength and modulus of the EVA/ESI foams increased generally with an increase in the styrene content, with the exception that ESIs with very low styrene content will confer on the blend a high modulus at small strain and a large elongation at break. [source]