Home About us Contact | |||
Ethylene Vinyl Acetate Copolymer (ethylene + vinyl_acetate_copolymer)
Selected AbstractsEffect of filler content and size on the properties of ethylene vinyl acetate copolymer,wood fiber compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007D. G. Dikobe Abstract In this study, the main focus was on the effect of wood fiber (WF) content and particle size on the morphology and mechanical, thermal, and water-absorption properties of uncompatibilized and ethylene glycidyl methacrylate copolymer (EGMA) compatibilized ethylene vinyl acetate copolymer,WF composites. For uncompatibilized composites, the tensile strength decreased with increasing WF content, whereas for compatibilized composites, the tensile strength initially decreased, but it increased for composites containing more than 5% WF. Small-WF-particle-containing composites had higher tensile strengths than composites containing larger WF particles, both in the presence and absence of EGMA. WF particle size did not seem to have much influence on the degradation behavior of the composites, whereas water absorption by the composites seemed to be higher in composites with smaller particle sizes for both compatibilized and uncompatibilized composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3645,3654, 2007 [source] Effect of ethylene glycidyl methacrylate compatibilizer on the structure and mechanical properties of clay nanocomposites modified with ethylene vinyl acetate copolymerJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007B. R. Guduri Abstract The structure and mechanical properties of clay modified with ethylene vinyl acetate copolymer in the presence of ethylene glycidyl methacrylate (EGMA) were investigated as a function of compatibilizer and clay contents. The structure and properties were determined by X-ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis (TGA). The presence of EGMA caused strong exfoliation of the clay in the polymer matrix, although at higher clay contents, some clay layers still existed. The more effective exfoliation, however, did not seem to substantially influence the tensile properties of the nanocomposites because the EGMA itself had a much stronger influence, which overshadowed any possible influence that the EGMA,clay interaction may have had on these properties. The thermal stability of the nanocomposites (as studied by TGA) improved in the presence of EGMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4095,4101, 2007 [source] Thermal and mechanical properties of uncrosslinked and chemically crosslinked polyethylene/ethylene vinyl acetate copolymer blendsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2007H. A. Khonakdar Abstract Uncrosslinked and chemically crosslinked binary blends of low- and high-density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt-mixing process using 0,3 wt % tert -butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation-at-break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co-continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261,3270, 2007 [source] In-vitro and in-vivo characterization of a buprenorphine delivery systemJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2006Sofie R. Kleppner Buprenorphine is a mu-opioid receptor partial agonist with enhanced safety and comparable efficacy to methadone for treatment of opioid dependence. The sublingual formulation of buprenorphine, approved for treatment of opioid dependence, produces variable buprenorphine blood levels and requires frequent dosing that limits patient compliance. To achieve stable buprenorphine levels that may improve patient outcome, an implantable sustained buprenorphine delivery system was developed. Each implant consists of ethylene vinyl acetate copolymer and 90 mg buprenorphine HCl, and measures 26 mm in length and 2.4 mm in diameter. Steady-state release in-vitro was 0.5 mg/implant/day. In-vivo pharmacokinetics and safety were examined for up to 52 weeks in beagle dogs receiving 8, 16 or 24 subcutaneous implants. Plasma buprenorphine concentrations correlated with the number of implants administered. Peak buprenorphine concentrations were generally reached within 24 h after implantation. Steady-state plasma levels were attained between 3 and 8 weeks, and were maintained for study duration, with a calculated mean release rate of 0.14 ± 0.04 mg/implant/day. There were no test-article-related adverse effects. This delivery system can provide long-term stable systemic buprenorphine levels, and may increase patient compliance, thereby improving outcome for opioid-dependent patients. [source] Use of Turkish huntite/hydromagnesite mineral in plastic materials as a flame retardantPOLYMER COMPOSITES, Issue 10 2010Hüsnügül Y, lmaz Atay In this study, the flame retardancy properties of huntite/hydromagnesite mineral in plastic compounds were investigated for potential electrical applications. Before the production of composite materials, huntite/hydromagnesite minerals were ground to particle sizes of 10, 1, and 0.1 ,m. Phase and microstructural analysis of huntite/hydromagnesite mineral powders were undertaken using XRD and SEM-EDS preceding the fabrication of the composite materials. The ground minerals with different particle size and content levels were subsequently added to ethylene vinyl acetate copolymer to produce composite materials. After fabrication of huntite/hydromagnesite reinforced plastic composite samples, they were characterized using DTA-TG, FTIR, and SEM-EDS. Flame retardancy tests were undertaken as a main objective of this research. The size distribution and the mineral content effects are measured regarding the flame retardancy of the polymer composites It was concluded that the flame retardant properties of plastic composites were improved as the mineral content increased and the size was reduced. POLYM. COMPOS., 31:1692,1700, 2010. © 2010 Society of Plastics Engineers. [source] Mechanical and oxygen barrier properties of organoclay-polyethylene nanocomposite filmsPOLYMER ENGINEERING & SCIENCE, Issue 7 2007Yang Zhong An organically modified montmorillonite was compounded with ethylene vinyl acetate copolymer (EVA), low density polyethylene (LDPE), and high density polyethylene (HDPE) in a twin-screw extruder. The resulting organoclay-polyethylene nanocomposites were then blown into films. Tensile properties and oxygen permeability of these nanocomposite films were investigated to understand the effects of organoclay on different types of polyethylene. It was found that the clay enhancing effects are function of the matrix. The mechanical and oxygen barrier properties of clay/EVA systems increased with clay loading. Both the tensile modulus and oxygen barrier of EVA doubled at 5 wt% clay. Maleic anhydride grafted polyethylene (MAPE) usually is used as a compatibilizer for LDPE and HDPE-based nanocomposites. However, the MAPEs were found to weaken the oxygen barrier of the PEs, especially for HDPE. This is believed to be a result of less compactness caused by the large side groups and the increase in polarity of the MAPEs. Incorporating 5 wt% clay improves the oxygen barrier by 30% and the tensile modulus by 37% for the LDPE/MAPE system. Incorporation of clay does not enhance the properties of the HDPE-based systems, likely due to large domain structure and poor bonding. Halpin,Tsai equation and the tortuous path equation were used to model the tensile modulus and oxygen permeability of the clay/EVA nanocomposite films. POLYM. ENG. SCI., 47:1101,1107, 2007. © 2007 Society of Plastics Engineers [source] |