Home About us Contact | |||
Estuarine Habitats (estuarine + habitat)
Selected AbstractsLow-temperature-driven early spawning migration of a temperate marine fishJOURNAL OF ANIMAL ECOLOGY, Issue 2 2004David W. Sims Summary 1It is often assumed that the timing of annual migrations of marine fish to spawning grounds occurs with very little change over time. However, it is unclear how much migration is influenced by climate change in marine species that spawn at sea but spend most time in estuarine conditions, especially as thermal regimes in estuaries may differ significantly from those in the open sea. 2Migration phenology was studied in a population of flounder, Platichthys flesus (L.) off south-west England using high-temporal resolution trawling data over a 13-year period. 3Flounder migrated from their estuarine habitat to spawning grounds at sea some 1,2 months earlier in years that were up to 2 °C cooler. Flounder arrived on the spawning grounds over a shorter time period (2,6 days) when colder than normal conditions prevailed in the estuary, compared to warmer years (12,15 days). This suggests that they were responding to low temperatures by exhibiting a more synchronous, population-level early migration. 4The timing of migration was earlier when the largest differences in temperatures between near-estuary and offshore environments occurred, differences that were related significantly to cold, negative phases of the North Atlantic Oscillation (NAO). 5Flounder migration phenology appears to be driven to a large extent by short-term, climate-induced changes in the thermal resources of their overwintering habitat. This suggests that climate fluctuations characterizing the NAO may have significant effects on the timing of the peak abundance of fish populations generally, which, in turn, may have implications for fisheries management. [source] Diversity, extinction risk and conservation of Malaysian fishesJOURNAL OF FISH BIOLOGY, Issue 9 2010V. C. Chong A total of 1951 species of freshwater and marine fishes belonging to 704 genera and 186 families are recorded in Malaysia. Almost half (48%) are currently threatened to some degree, while nearly one third (27%) mostly from the marine and coral habitats require urgent scientific studies to evaluate their status. Freshwater habitats encompass the highest percentage of threatened fish species (87%) followed by estuarine habitats (66%). Of the 32 species of highly threatened (HT) species, 16 are freshwater and 16 are largely marine,euryhaline species. Fish extinctions in Malaysia are confined to two freshwater species, but both freshwater and marine species are being increasingly threatened by largely habitat loss or modification (76%), overfishing (27%) and by-catch (23%). The most important threat to freshwater fishes is habitat modification and overfishing, while 35 species are threatened due to their endemism. Brackish-water, euryhaline and marine fishes are threatened mainly by overfishing, by-catch and habitat modification. Sedimentation (pollution) additionally threatens coral-reef fishes. The study provides recommendations to governments, fish managers, scientists and stakeholders to address the increasing and unabated extinction risks faced by the Malaysian fish fauna. [source] The status of fish conservation in South African estuariesJOURNAL OF FISH BIOLOGY, Issue 9 2010A. K. Whitfield Estuary-dependent fish species are defined as those taxa whose populations would be adversely affected by the loss of estuarine habitats. Of the 155 species regularly recorded in South African estuaries, only 32 (21%) are completely dependent on these systems, but this figure increases to 103 species (66%) if partially dependent taxa are included in the analysis. The conservation of fishes in estuaries on the subcontinent is threatened by a number of factors, including habitat degradation, disruption of essential ecological processes, hydrological manipulations, environmental pollution, overexploitation due to fishing activities and, more recently, climate change and the effects of introduced aquatic animals. Although major threats to fishes are usually linked to environmental degradation, there is increasing evidence that the stocks of certain fish species are overexploited or collapsed. Fish conservation and fisheries management does not depend on the implementation of a single action, but rather the co-ordination of a detailed plan, often in a multidisciplinary context. Some examples of innovative means of contributing to estuarine fish conservation in a South African context include the determination and implementation of the ecological freshwater requirements for estuaries, the zoning of estuaries for different uses and the recognition that the maintenance of ecological processes are vital to aquatic ecosystem health. Apart from the designation of protected areas, the main direct means of conserving fish species and stocks include habitat conservation, controls over fishing methods, effort, efficiency and seasonality, pollution control and the prevention of artificial manipulation of estuary mouths. Since becoming a democracy in 1994, environmental legislation, policy and institutional arrangements in South Africa have undergone some major changes, which, if fully implemented, will be very positive for fish conservation in estuaries on the subcontinent. [source] The effect of environmental factors on the distribution of Neoparamoeba pemaquidensis in TasmaniaJOURNAL OF FISH DISEASES, Issue 10 2005M Douglas-Helders Abstract Aquaculture in Tasmania is mostly carried out in estuaries. These estuarine habitats show a great variety and form unique environments in which Neoparamoeba pemaquidensis, the amoebic gill disease (AGD)-causing protozoan, may or may not survive. Tasmania is divided into two zones, one where AGD is present and one where AGD is absent, but any ecological data to rationalize this distribution is lacking. In in vitro trials N. pemaquidensis strains were exposed to different concentrations of ammonium sulphate, copper sulphate, copper sulphate and tannin, and different Neoparamoeba densities, salinities and temperatures. A trial using field water samples investigated the survival of N. pemaquidensis in waters sourced from AGD-free and AGD-positive zones, and water analysis was performed to determine any differences. Significantly decreased protozoan survival was found with exposure to increasing copper sulphate concentrations from 10 to 100 000,m (P < 0.001), salinity of 15, (P < 0.001), low Neoparamoeba densities of 625 and 1250 cells mL,1 (P = 0.0005), and water sourced from Macquarie Harbour (P < 0.001). The water chemistry of this AGD-free zone showed significantly lower dissolved calcium and magnesium concentrations which may contribute to this area being AGD-free. Understanding of the ecology of N. pemaquidensis will enable better control and prevention strategies for Tasmanian salmon growers. [source] The circatidal rhythm of the estuarine gastropod Hydrobia ulvae (Gastropoda: Hydrobiidae)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010SÓNIA VIEIRA Intertidal animals display a suite of cyclic behaviours that evolved as adaptations to the predictable cycle of inundation and exposure. In estuarine habitats, mud snails from the genus Hydrobia are among the most abundant grazers, and have received considerable attention with respect to the behavioural mechanisms mediating locomotion, dispersal, and feeding, although the nature of the control of these processes has remained elusive. In particular, it is not clear whether endogenous activity patterns are related to periodic changes of microphytobenthos biomass at the sediment surface, or whether they are timed to the tidal cycle at all. In the present study, we address the crawling activity of Hydrobia ulvae under constant conditions, as well as the effects of individual size and previous short-term exposure to tides of different range, by recording immersed individual snails under constant dark conditions. We show that the species displays an overt circatidal pattern of crawling, with activity peaks around high water, and that the start of inundation may act as an entrainment agent of the rhythm. Moreover, the results obtained indicate that smaller snails display higher levels of activity, although neither the size nor previous in situ influence of tidal range has an effect on the period and on the amplitude of the rhythm. These findings suggest that fluctuations of microphytobenthos biomass are not a sufficiently strong selective pressure to have shaped locomotor activity in H. ulvae. Moreover, feeding of H. ulvae should take place mostly during high water and be independent of periodic fluctuations of microphytobenthos biomass at the surface of the sediment. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 439,450. [source] |