Essential Properties (essential + property)

Distribution by Scientific Domains


Selected Abstracts


New Concepts in Evolutionary Search for Boolean Functions in Cryptology

COMPUTATIONAL INTELLIGENCE, Issue 3 2004
William Millan
In symmetric cryptology the resistance to attacks depends critically on the nonlinearity properties of the Boolean functions describing cipher components like Substitution boxes (S-boxes). Some of the most effective methods known to generate functions that satisfy multiple criteria are based on evolutionary heuristics. In this paper, we improve on these algorithms by employing an adaptive strategy. Additionally, using recent improvements in the understanding of these combinatorial structures, we discover essential properties of the graph formed by affine equivalence classes of Boolean functions, which offers several advantages as a conceptual model for multiobjective seeking evolutionary heuristics. Finally, we propose the first major global cooperative effort to discover new bounds for cryptographic properties of Boolean functions. [source]


Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007
Clare Guilding
Abstract The suprachiasmatic nucleus of the hypothalamus (SCN) is the master circadian pacemaker or clock in the mammalian brain. Canonical theory holds that the output from this single, dominant clock is responsible for driving most daily rhythms in physiology and behaviour. However, important recent findings challenge this uniclock model and reveal clock-like activities in many neural and non-neural tissues. Thus, in addition to the SCN, a number of areas of the mammalian brain including the olfactory bulb, amygdala, lateral habenula and a variety of nuclei in the hypothalamus, express circadian rhythms in core clock gene expression, hormone output and electrical activity. This review examines the evidence for extra-SCN circadian oscillators in the mammalian brain and highlights some of the essential properties and key differences between brain oscillators. The demonstration of neural pacemakers outside the SCN has wide-ranging implications for models of the circadian system at a whole-organism level. [source]


Optimised Dirac operators on the lattice: construction, properties and applications

FORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 2 2008
2Article first published online: 29 NOV 200, W. Bietenholz
Abstract We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p -regime and in the ,-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian , the chiral condensate and the pion decay constant , from QCD simulations with extremely light quarks. [source]


Gq/11-induced intracellular calcium mobilization mediates Per2 acute induction in Rat-1 fibroblasts

GENES TO CELLS, Issue 9 2006
Naoyuki Takashima
Phase resetting is one of the essential properties of circadian clocks that is required for the adjustment to a particular environment and the induction of Per1 and Per2 clock genes is believed to be a primary molecular event during this process. Although the intracellular signal transduction pathway underlying Per1 gene activation has been well characterized, the mechanisms that control Per2 up-regulation have not yet been elucidated. In our present study, we demonstrate that Gq/11 coupled receptors mediate serum-induced immediate rat Per2 (rPer2) transactivation in Rat-1 fibroblasts via intracellular Ca2+ mobilization. Stimulation of these cells with a high concentration of serum was found to rapidly increase the intracellular Ca2+ levels and strongly up-regulated rPer2 gene. rPer2 induction by serum stimulation was abrogated by intracellular Ca2+ chelation and depletion of intracellular Ca2+ store, which suggests that the calcium mobilization is necessary for the up-regulation of rPer2 gene. In addition, suppression of Gq/11 function was observed to inhibit both Ca2+ mobilization and rPer2 induction. Further, we demonstrated that endothelin-induced acute rPer2 transactivation via Gq/11-coupled endothelin receptors is also suppressed by a Gq/11 specific inhibitor. These findings together suggest that serum and endothelin utilize a common Gq/11-PLC mediated pathway for the transactivation of rPer2, which involves the mobilization of calcium from the intracellular calcium store. [source]


Analysis and modification of nonhyperbolic kinetic models

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 5 2008
Alfonsas Ju, kaArticle first published online: 10 MAR 200
A nonhyperbolic model of Rabin (Biochem J 1967, 102, 22C,23C) in which four conformational states are considered has been simplified to the three-state one. Only multistate models (if the concentration of enzyme or receptor is assumed to be low) can yield nonhyperbolic kinetics. The simplified model has been shown to retain all the essential properties of the original four-state model. The model yields a diversity of nonhyperbolic dose,response curves both with higher and lower steepness than that of Henri-type ones. The three-state model can be further reduced to the hyperbolic one by making identical the different (unliganded) states. The bistate model in which protein concentration is assumed to be high yields nonhyperbolic kinetics as well; the model is reduced to the hyperbolic one if the protein concentration is assumed to be low. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 253,258, 2008 [source]


The role of tryptophan in the antibacterial activity of a 15-residue bovine lactoferricin peptide

JOURNAL OF PEPTIDE SCIENCE, Issue 4 2001
Bengt Erik Haug
Abstract Bovine lactoferricin is a 25-residue antibacterial peptide isolated after gastric cleavage of the iron transporting protein lactoferrin. A 15-residue fragment, FKCRRWQWRMKKLGA of this peptide sustains most of the antibacterial activity. In this truncated sequence, the two Trp residues are found to be essential for antibacterial activity. The anchoring properties of Trp, as have been observed in membrane proteins, are believed to be important for the interaction of Trp containing antibacterial peptides with bacterial cell membranes. We have investigated the molecular properties which make Trp important for the antibacterial activity of the 15-residue peptide by replacing Trp with natural and unnatural aromatic amino acids. This series of peptides was tested for antibacterial activity against Echerichia coli and Staphylococcus aureus. We found that neither the hydrogen bonding ability nor the amphipathicity of the indole system are essential properties for the effect of Trp on the antibacterial activity of the peptides. Replacement of Trp with residues containing aromatic hydrocarbon side chains gave the most active peptides. We propose that aromatic hydrocarbon residues are able to position themselves deeper into the bacterial cell membrane, making the peptide more efficient in disrupting the bacterial cell membrane. From our results the size, shape and aromatic character of Trp seem to be the most important features for the activity of this class of Trp containing antibacterial peptides. Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd. [source]


Preparation and characterization of a customized cellulose acetate butyrate dispersion for controlled drug delivery

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 6 2002
Siva Vaithiyalingam
Abstract The purpose of the present experiment was to prepare and characterize the aqueous-based pseudolatex system of cellulose acetate butyrate (CAB) for controlled drug delivery. Aqueous pseudolatex systems are advantageous over organic-based coating systems because these systems are devoid of criteria pollutants such as carbon monoxide, nitrogen oxides, nonmethane volatile organic compounds, and sulfur dioxide. Pseudolatex was prepared with CAB and polyvinyl alcohol (stabilizer) by a polymer emulsification technique. The stability of pseudolatex was evaluated. Particle size was measured and rheological experiments were conducted. The glass transition temperature, microscopic free volume, permeation coefficient, and mechanical properties of plasticized pseudolatex films were estimated. Surface roughness of coating on inert Nu-Pareil® beads (Ingredient Technology Corp., Mahwah, NJ) was measured as a function of coating weight gain. The CAB Pseudolatex was found to be stabilized by steric forces. From intrinsic viscosity, the thickness of the stabilization layer was estimated. An increase in polymeric particles proportionately decreased the thickness of the stabilization layer. All the essential properties of a coating membrane such as microscopic free-volume fraction, permeability coefficient, mechanical properties, and glass transition temperature were fairly controllable as a function of plasticizer concentration. The pseudolatex dispersion of CAB was stable with negligible sedimentation volume and a particle size of 300 nm. Because CAB is water insoluble and non-ionizable, this pseudolatex can be used for pH-independent coating. The films obtained were strong and flexible for controlled drug delivery applications. Coating with the CAB dispersion reduced the surface roughness of beads but it remained stable as a function of increase in coating weight gain. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:1512,1522, 2002 [source]


Form, symmetry and packing of biomacromolecules.

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 3 2010

The differentiation of the human rhinovirus into serotypes, all having very similar structures and the same architecture, is shown to be related to the packing of the viruses in the crystal and to its space-group symmetry. The molecular crystallographic properties (here described in terms of a molecular lattice ,M instead of the form lattice ,F considered in previous publications) appear to be compatible with the crystal structure and with the packing lattice ,P, introduced in Part I [Janner (2010). Acta Cryst. A66, 301,311]. On the basis of the enclosing forms of the capsid, a sphere packing is considered, where the spheres touch at kissing points. Residues of each of the four coat proteins (VP1, VP2, VP3, VP4), having a minimal distance from the kissing points, define a set of kissing point related (KPR) residues. In this set only four different residues occur, one for each coat protein, ordered into symmetric clusters {already classified in a previous publication [Janner (2006). Acta Cryst. A62, 270,286]} and indexed by neighbouring lattice points of ,P (or equivalently of ,M). The indexed KPR residues allow a fingerprint characterization of the five rhinovirus serotypes whose structures are known (HRV16, HRV14, HRV3, HRV2 and HRV1A). In the fingerprint they occur as internal (if inside the given capsid), as external (if belonging to the neighbouring viruses) or as a contact residue (if at a kissing point position). The same fingerprint, periodically extended, permits a coarse-grained reconstruction of the essential properties of the crystal packing, invariant with respect to the space group of the serotype. [source]


Interpreting Statistical Evidence with Empirical Likelihood Functions

BIOMETRICAL JOURNAL, Issue 4 2009
Zhiwei Zhang
Abstract There has been growing interest in the likelihood paradigm of statistics, where statistical evidence is represented by the likelihood function and its strength is measured by likelihood ratios. The available literature in this area has so far focused on parametric likelihood functions, though in some cases a parametric likelihood can be robustified. This focused discussion on parametric models, while insightful and productive, may have left the impression that the likelihood paradigm is best suited to parametric situations. This article discusses the use of empirical likelihood functions, a well-developed methodology in the frequentist paradigm, to interpret statistical evidence in nonparametric and semiparametric situations. A comparative review of literature shows that, while an empirical likelihood is not a true probability density, it has the essential properties, namely consistency and local asymptotic normality that unify and justify the various parametric likelihood methods for evidential analysis. Real examples are presented to illustrate and compare the empirical likelihood method and the parametric likelihood methods. These methods are also compared in terms of asymptotic efficiency by combining relevant results from different areas. It is seen that a parametric likelihood based on a correctly specified model is generally more efficient than an empirical likelihood for the same parameter. However, when the working model fails, a parametric likelihood either breaks down or, if a robust version exists, becomes less efficient than the corresponding empirical likelihood. [source]


Inorganic Layers on Polymeric Films , Influence of Defects and Morphology on Barrier Properties

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 5 2003
M. Hanika
Abstract Flexible polymeric films are not only widely used in conventional packaging as substitute for glass and aluminum foil packaging but are also proposed as encapsulation for novel products, like flexible solar cells or organic light-emitting devices. The two essential properties of the polymeric packaging are flexibility and good permeation barrier properties against gases and vapors. This article deals with vacuum web coating as a common way of increasing barrier properties of polymeric films and the problems related to this procedure. Defects caused by particles and surface imperfections are found to dominate the permeation rate for such coated polymeric films. Atomic force microscopy, electron and also optical microscopy was used for analysis of the coating layer. Three-dimensional numerical simulations were performed for modeling of the influence of defect size, spacing and film thickness. Results of numerical modeling and of many practical experiments show that the permeability is almost independent of the substrate film thickness when a critical thickness is exceeded. In most cases the defects can be treated as independent of each other. The gas permeability of vacuum web-coated polymeric films can be quantitatively predicted by a simple formula. For gases, like oxygen, it is shown that a statistic analysis of the defect sizes by optical microscopy is sufficient. For water vapor transmission, however, the structure of the coating layer itself has also to be taken into account. [source]


Support vector regression to predict asphalt mix performance

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 16 2008
Maher Maalouf
Abstract Material properties are essential in the design and evaluation of pavements. In this paper, the potential of support vector regression (SVR) algorithm is explored to predict the resilient modulus (MR), which is an essential property in designing and evaluating pavement materials, particularly hot mix asphalt typically used in Oklahoma. SVR is a statistical learning algorithm that is applied to regression problems; in our study, SVR was shown to be superior to the least squares (LS). Compared with the widely used LS method, the results of this study show that SVR significantly reduces the mean-squared error and improves the correlation coefficient. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Structure,function relationship studies of PTH(1,11) analogues containing sterically hindered dipeptide mimetics

JOURNAL OF PEPTIDE SCIENCE, Issue 8 2007
Nereo Fiori
Abstract The N -terminal 1,34 fragment of parathyroid hormone (PTH) is fully active in vitro and in vivo and reproduces all biological responses characteristic of the native intact PTH. In order to develop safer and non-parenteral PTH-like bone anabolic agents, we have studied the effect of introducing conformationally constrained dipeptide mimetics into the N -terminal portion of PTH in an effort to generate miniaturized PTH-mimetics. To this end, we have synthesized and conformationally and biologically characterized PTH(1,11) analogues containing 3R -carboxy-6S -amino-7,5-bicyclic thiazolidinlactam (7,5-bTL), a rigidified dipeptide mimetic unit. The wild type sequence of PTH(1,11) is H-Ser-Val-Ser-Glu-Ile-Gln-Leu-Met-His-Asn-Leu-NH2. The following pseudo-undecapeptides were prepared: [Ala1, 7,5-bTL3, 4, Nle8, Arg11]hPTH(1,11)NH2 (I); [Ala1, 7,5-bTL6, 7, Nle8, Arg11]hPTH(1,11)NH2 (II); [Ala1, Nle8, 7,5-bTL9, 10, Arg11]hPTH(1,11)NH2 (III). In aqueous solution containing 20% TFE, only analogue I exhibited the typical CD pattern of the ,-helical conformation. NMR experiments and molecular dynamics calculations located the ,-helical stretch in the sequence Ile5 -His9. The dipeptide mimetic unit 7,5-bTL induces a type III ,-turn, occupying the positions i , 1 and i of the turn. Analogue II exhibited an equilibrium between a type I ,-turn and an ,-helix, and analogue III did not show any ordered structure. Biological tests revealed poor activity for all analogues (EC50 > 0.1 mM). Apparently, the relative side-chain orientation of Val2, Ile5 and Met8 can be critical for effective analogue-receptor interaction. Considering helicity as an essential property to obtain active PTH agonists, one must decorate the correctly positioned dipeptide mimetic azabicycloalkane scaffold with substitutions corresponding to the displaced amino acids. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source]