Home About us Contact | |||
Erythrocyte Invasion (erythrocyte + invasion)
Selected AbstractsMyosins of Babesia bovis: Molecular characterisation, erythrocyte invasion, and phylogenyCYTOSKELETON, Issue 4 2002A.E. Lew Abstract Using degenerate primers, three putative myosin sequences were amplified from Australian isolates of Babesa bovis and confirmed as myosins (termed Bbmyo-A, Bbmyo-B, and Bbmyo-C) from in vitro cultures of the W strain of B. bovis. Comprehensive analysis of 15 apicomplexan myosins suggests that members of Class XIV be defined as those with greater than 35% myosin head sequence identity and that these be further subclassed into groups bearing above 50,60% identity. Bbmyo-A protein bears a strong similarity with other apicomplexan myosin-A type proteins (subclass XIVa), the Bbmyo-B myosin head protein sequence exhibits low identity (35,39%) with all members of Class XIV, and 5,-sequence of Bbmyo-C shows strong identity (60%) with P. falciparum myosin-C protein. Domain analysis revealed five divergent IQ domains within the neck of Pfmyo-C, and a myosin-N terminal domain as well as a classical IQ sequence unusually located within the head converter domain of Bbmyo-B. A cross-reacting antibody directed against P. falciparum myosin-A (Pfmyo-A) revealed a zone of approximately 85 kDa in immunoblots prepared with B. bovis total protein, and immunofluorescence inferred stage-specific myosin-A expression since only 25% of infected erythrocytes with mostly paired B. bovis were immuno-positive. Multiplication of B. bovis in in vitro culture was inhibited by myosin- and actin-binding drugs at concentrations lower than those that inhibit P. falciparum. This study identifies and classifies three myosin genes and an actin gene in B. bovis, and provides the first evidence for the participation of an actomyosin-based motor in erythrocyte invasion in this species of apicomplexan parasite. Cell Motil. Cytoskeleton 52:202,220, 2002. © 2002 Wiley-Liss, Inc. [source] Getting down to malarial nuts and bolts: the interaction between Plasmodium vivax merozoites and their host erythrocytesMOLECULAR MICROBIOLOGY, Issue 5 2005Julian Rayner Summary Of the four Plasmodium species that routinely cause malaria in humans, Plasmodium falciparum is responsible for the majority of malaria mortality and consequently gets most of the headlines. Outside Africa, however, more malaria cases are caused by its distant cousin Plasmodium vivax, resulting in a daunting morbidity and economic burden for countries across Asia and the Americas. Plasmodium life cycles are complex, but the symptoms and pathology of malaria occur during the blood phase, when merozoites recognize and invade erythrocytes, initiating a developmental programme that culminates in lysis of the erythrocyte and release of multiple daughter merozoites. P. vivax merozoites are dependent on a single host cell receptor for erythrocyte invasion, the Duffy antigen receptor for chemokines, and humans that do not express this receptor on the surface of their erythrocytes are immune to P. vivax infection. This essential receptor,ligand interaction is addressed from both the host and parasite side in two papers in this issue of Molecular Microbiology, with important implications for plans to develop a P. vivax vaccine. [source] Reticulocyte binding protein homologues are key adhesins during erythrocyte invasion by Plasmodium falciparumCELLULAR MICROBIOLOGY, Issue 11 2009Tony Triglia Summary The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand,receptor interactions. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1 and PfRh4, members of this protein family, bind to red blood cells and function in merozoite invasion during which they undergo a series of proteolytic cleavage events before and during entry into the host cell. The ectodomain of PfRh1 and PfRh4 are processed to produce fragments consistent with cleavage in the transmembrane domain and released into the supernatant, at about the time of invasion, in a manner consistent with rhomboid protease cleavage. Processing of both PfRh1 and PfRh4, and by extrapolation all membrane-bound members of this protein family, is important for function and release of these proteins on the merozoite surface and they along with EBA-175 are important components of the tight junction, the transient structure that links the erythrocyte via receptor,ligand interactions to the actin,myosin motor in the invading merozoite. [source] |