Home About us Contact | |||
Erosional Processes (erosional + process)
Selected AbstractsSoil detachment and transport on field- and laboratory-scale interrill areas: erosion processes and the size-selectivity of eroded sedimentEARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2006O. Malam Issa Abstract Field- and laboratory-scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi-arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h,1 with a duration of 1 to 2 hours. Time-series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size-selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport-limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size-selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd. [source] Soil erosion assessment using geomorphological remote sensing techniques: an example from southern ItalyEARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2010Sergio Lo Curzio Abstract The aim of this study is to assess of the distribution and map the geomorphological effects of soil erosion at the basin scale identifying newly-formed erosional landsurfaces (NeFELs), by means of an integration of Landsat ETM 7+ remotely sensed data and field-surveyed geomorphological data. The study was performed on a 228·6,km2 -wide area, located in southern Italy. The study area was first characterized from a lithological, pedological, land-use and morpho-topographic point of view and thematic maps were created. Then, the georeferenced Landsat ETM 7+ satellite imagery was processed using the RSI ENVI 4.0 software. The processing consisted of contrast stretching, principal component analysis (PCA), decorrelation stretching and RGB false colour compositing. A field survey was conducted to characterize the features detected on the imagery. Particular attention was given to the NeFELs, which were located using a global positioning system (GPS). We then delimited the Regions of Interest (ROI) on the Landsat ETM 7+ imagery, i.e. polygons representing the ,ground-truth', discriminating the NeFELs from the other features occurring in the imagery. A simple statistical analysis was conducted on the digital number (DN) values of the pixels enclosed in the ROI of the NeFELs, with the aim to determine the spectral response pattern of such landsurfaces. The NeFELs were then classified in the entire image using a maximum likelihood classification algorithm. The results of the classification process were checked in the field. Finally, a spatial analysis was performed by converting the detected landsurfaces into vectorial format and importing them into the ESRI ArcViewGIS 9.0 software. Application of these procedures, together with the results of the field survey, highlighted that some ,objects' in the classified imagery, even if displaying the same spectral response of NeFELs, were not landsurfaces subject to intense soil erosion, thus confirming the strategic importance of the field-checking for the automatically produced data. During the production of the map of the NeFELs, which is the final result of the study, these ,objects' were eliminated by means of simple, geomorphologically-coherent intersection procedures in a geographic information system (GIS) environment. The overall surface of the NeFELs had an area of 22·9,km2, which was 10% of the total. The spatial analysis showed that the highest frequency of the NeFELs occurred on both south-facing and southwest-facing slopes, cut on clayey-marly deposits, on which fine-textured and carbonate-rich Inceptisols were present and displaying slope angle values ranging from 12° to 20°. The comparison of two satellite imageries of different periods highlighted that the NeFELs were most clearly evident immediately after summer tillage operations and not so evident before them, suggesting that these practices could have played an important role in inducing the erosional processes. Copyright © 2009 John Wiley & Sons, Ltd. [source] Using Rock-Eval 6 pyrolysis for tracking fossil organic carbon in modern environments: implications for the roles of erosion and weatheringEARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2006Yoann Copard Abstract This work relates to the debate on the fossil organic carbon (FOC) input in modern environments and its possible implication for the carbon cycle, and suggests the use of Rock-Eval 6 pyrolysis as a relevant tool for tracking FOC in such environments. Considering that such a delivery is mainly due to supergene processes affecting the continental surface, we studied organic matter in different reservoirs such as bedrocks, alterites, soils and rivers in two experimental catchments at Draix (Alpes de Haute Provence, France). Samples were subjected to geochemical (Rock-Eval 6 pyrolysis) investigations and artificial bacterial degradations. After comparing the geochemical fingerprint of samples, geochemical markers of FOC were defined and tracked in the different reservoirs. Our results confirm the contribution of FOC in modern soils and rivers and display the various influences of weathering and erosional processes on the fate of FOC during its exchange between these pools. In addition, the contrasting behaviour of these markers upon the supergene processes has also highlighted the refractory or labile characters of the fossil organic matter (FOM). Bedrock to river fluxes, controlled by gully erosion, are characterized by a qualitative and quantitative preservation of FOM. Bedrock to alterite fluxes, governed by chemical weathering, are characterized by FOC mineralization without qualitative changes in deeper alterites. Alterite to soils fluxes, controlled by (bio)chemical weathering, are characterized by strong FOC mineralization and qualitative changes of FOM. Thus weathering and erosional processes induce different FOM evolution and affect the fate of FOC towards the global carbon cycle. In this study, gully erosion would involve maintenance of an ancient sink for the global carbon cycle, while (bio)chemical processes provide a source of CO2. Finally, this study suggests that Rock-Eval 6 pyrolysis can be considered as a relevant tool for tracking FOC in modern environments. Copyright © 2006 John Wiley & Sons, Ltd. [source] Challenges and opportunities in soil organic matter researchEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2009R. Lal Summary Soil organic matter (SOM) can be a source or sink for atmospheric CO2 depending on land use, and management of soil, vegetation and water resources. SOM is a source of atmospheric CO2, with the use of extractive farming practices that lead to a negative nutrient balance and exacerbate soil degradation. The historic loss of C from the SOM pool between the 1850s and 2000 is estimated at 78 ± 12 Gt compared with the emission of 270 ± 30 Gt from fossil fuel combustion. Despite its numerous direct and ancillary benefits, enhancing the SOM pool is a major challenge, especially in impoverished and depleted soils in harsh tropical climates. In addition to biophysical factors, there are also numerous social, economic and political constraints that limit increase in SOM pools. Conversion of plough-tillage to no-till farming, an important practice to enhance the SOM pool, is constrained by the limited access to herbicides and seed drill, and the competing uses of crop residues. Yet, enhancing the SOM pool is essential to restoring degraded soils, advancing food security and improving the environment. Important subjects among researchable topics include: assessing the rate of SOM accretion for a wide range of land use and management practices with reference to a baseline; evaluating the importance of biochar; measuring and predicting SOM at landscape and extrapolation to regional scale; establishing relationships between SOM and soil quality and agronomic productivity; determining on- and off-site effects of crop residues removal for ethanol/biofuel production; determining the fate of C in SOM translocated by erosional processes; evaluating nutrient requirements for increasing SOM in croplands; validating predictive models in tropical environments; and developing methodology for trading C credits. [source] Climatic and geomorphic factors affecting contemporary (1950,2004) activity of retrogressive thaw slumps on the Aklavik Plateau, Richardson Mountains, NWT, CanadaPERMAFROST AND PERIGLACIAL PROCESSES, Issue 1 2010Denis Lacelle Abstract The climatic and geomorphic factors affecting retrogressive thaw slump initiation and activity on the Aklavik Plateau (Richardson Mountains, NWT) were examined using historical air photographs over a 54-year period (1950 to 2004). In this region, thaw slumps include a near-vertical headwall, a floor of low gradient (2,10°) and a steeply sloping evacuation channel (15,25°) that connects the floor of the thaw slumps to Willow River located 60,150,m below. All thaw slumps on the Aklavik Plateau are located within the glacial limit of the Laurentide Ice Sheet and the majority developed on the western side of the valley on gently sloping terrain. Aerial photographic analysis showed an increase in thaw slump initiation from 0.35 new thaw slump yr,1 over the 1954,71 period to 0.68 new thaw slump yr,1 over the 1985,2004 period. This increase follows the pattern of the 10-year running mean summer air temperature record over the 1950,2004 period. However, the total number of active mature thaw slumps on the Aklavik Plateau decreased from a maximum of 46 in 1950 to a minimum of 24 observed in 2004, which follows, to a certain extent, the 10-year running average of rainfall. Both these trends may relate to the influence of climate on the erosional processes that are thought to initiate thaw slumps and keep them active in regions of highlands. Copyright © 2009 John Wiley & Sons, Ltd. and Her Majesty the Queen in right of Canada. [source] |