Home About us Contact | |||
Erosion Rates (erosion + rate)
Kinds of Erosion Rates Selected AbstractsChanges in hydrology and erosion over a transition from grassland to shrublandHYDROLOGICAL PROCESSES, Issue 4 2010Laura Turnbull Abstract The degradation of grasslands is a common problem across semi-arid areas worldwide. Over the last 150 years, much of the south-western United States has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Plot-based experiments to determine how spatio-temporal characteristics of soil moisture, runoff and erosion change over a transition from grassland to shrubland were carried out at four sites over a transition from black grama (Bouteloua eriopoda) grassland to creosotebush (Larrea tridentata) shrubland at the Sevilleta NWR LTER site in New Mexico. Each site consisted of a 10 × 30 m bounded runoff plot and adjacent characterization plots with nested sampling points where soil moisture content was measured. Results show distinct spatio-temporal variations in soil moisture content, which are due to the net effect of processes operating at multiple spatial and temporal scales, such as plant uptake of water at local scales versus the redistribution of water during runoff events at the hillslope scale. There is an overall increase in runoff and erosion over the transition from grassland to shrubland, which is likely to be associated with an increase in connectivity of bare, runoff-generating areas, although these increases do not appear to follow a linear trajectory. Erosion rates increased over the transition from grassland to shrubland, likely related in part to changes in runoff characteristics and the increased capacity of the runoff to detach, entrain and transport sediment. Over all plots, fine material was preferentially eroded which has potential implications for nutrient cycling since nutrients tend to be associated with fine sediment. Copyright © 2009 John Wiley & Sons, Ltd. [source] A mathematical model for steady-state regolith production at constant erosion rateEARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2010M.I. Lebedeva Abstract It has been hypothesized that many soil profiles reach a steady-state thickness. In this work, such profiles were simulated using a one-dimensional model of reaction with advective and diffusive solute transport. A model ,rock' is considered, consisting of albite that weathers to kaolinite in the presence of chemically inert quartz. The model yields three different steady-state regimes of weathering. At the lowest erosion rates, a local-equilibrium regime is established where albite is completely depleted in the weathering zone. This regime is equivalent to the transport-limited regime described in the literature. With an increase in erosion rate, transition and kinetic regimes are established. In the transition regime, both albite and kaolinite are present in the weathering zone, but albite does not persist to the soil,air interface. In the weathering-limited regime, here called the kinetic regime, albite persists to the soil,air interface. The steady-state thickness of regolith decreases with increasing erosion rate in the local equilibrium and transition regimes, but in the kinetic regime, this thickness is independent of erosion rate. Analytical expressions derived from the model are used to show that regolith production rates decrease exponentially with regolith thickness. The steady-state regolith thickness increases with the Darcy velocity of the pore fluid, and in the local equilibrium regime may vary markedly with small variations in this velocity and erosion rate. In the weathering-limited regime, the temperature dependences for chemical weathering rates are related to the activation energy for the rate constant for mineral reaction and to the ,H of dissolution, while for local equilibrium regimes they are related to the ,H only. The model illustrates how geochemical and geomorphological observations are related for a simple compositional system. The insights provided will be useful in interpreting natural regolith profiles. Copyright © 2010 John Wiley & Sons, Ltd. [source] Quantifying periglacial erosion: insights on a glacial sediment budget, Matanuska Glacier, AlaskaEARTH SURFACE PROCESSES AND LANDFORMS, Issue 15 2009Colin R. O'Farrell Abstract Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8-yr record of proglacial suspended sediment yield. Non-glacial lowering rates range from 1·8 ± 0·5,mm,yr,1 to 8·5 ± 3·4,mm,yr,1 from estimates of rock fall and debris-flow fan volumes. An average erosion rate of 0·08 ± 0·04,mm,yr,1 from eight convex-up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice-cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106,t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106,t, corresponding to an erosion rate of 1·8 ± 0·6,mm,yr,1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub-basin (32% ice-cover) to determine an erosion rate of 12·1 ± 6·9,mm,yr,1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice-free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd. [source] Channel sedimentation and erosion of the Jiangsu reach of the Yangtze River during the last 44 yearsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2009Wang Jian Abstract River channel sedimentation in the lower reaches of the Yangtze River can be affected by both changes in sea level and changes in solid discharge from the upper river. To evaluate dynamic changes of sedimentation and erosion in the Jiangsu reach of the Yangtze River (about 330 km in length) from 1959 to 2003, databases were designed and constructed using a digital elevation model (DEM) of channel topography based on the Jiangsu River Relief Map for 1959, 1970, 1985, 1992, and 2003. The results indicated that the main course of the Yangtze River in Jiangsu Province had experienced an obvious switch from sedimentation to erosion status around 1985 because of the decreasing amount of solid load from the upper parts of the river channel after that year. The sedimentation process in the main course of the Jiangsu reach of the Yangtze River demonstrated the propulsive process of ,downstream-ward aggradations.' Between 1985 and 2003, the erosion rate of the lower segment was greater than those of the middle and upper segments; this is probably because both channel flow and tide current had influenced the lower segment. When channel flow combines with tide current in the same direction, channel erosion can be intensified, especially if there is a solid load shortage in the channel. Copyright © 2009 John Wiley & Sons, Ltd. [source] A one-dimensional model for simulating armouring and erosion on hillslopes: 2.EARTH SURFACE PROCESSES AND LANDFORMS, Issue 10 2007Long term erosion, armouring predictions for two contrasting mine spoils Abstract This paper investigates the dynamics of soil armouring as a result of fluvial erosion for a non-cohesive sandy gravel spoil from the Ranger Mine, Australia, and a cohesive silt loam spoil from the Northparkes Mine, Australia, using a model for hillslope soil armouring. These long term predictions concentrate on the temporal and spatial changes of the spoil grading and erosion over 100,200 years for the flat cap regions (1,2%) and steep batter edges (10,30%) typically encountered on waste rock dumps. The existence of a significant rock fragment fraction in the Ranger spoil means that it armours readily, while Northparkes does not. For Ranger the waste rock showed reductions in (1) cumulative erosion of up to 81% from that obtained by extrapolating the initial erosion rate out 100 years and (2) the erosion/year by more than 10-fold. For Northparkes reductions were less marked, with the maximum reduction in erosion/year being 37% after 200 years. For Ranger the reductions were greatest and fastest for intermediate gradient hillslopes. For the steepest hillslopes the armouring decreased because the flow shear stresses were large enough to mobilize all material in the armour layer. Model uncertainty was assessed with probabilistic confidence limits demonstrating that these erodibility reductions were statistically significant. A commonly used hillslope erosion model (sediment flux = ,1 discharge m1 slope n1) was fitted to these predictions. The erodibility, ,1, and m1 decreased with time, which was consistent with our physical intuition about armouring. At Ranger the parameter m1 asymptoted to 1·5,1·6 while at Northparkes it asymptoted to 1·2,1·3. At Ranger transient spatial trends in armouring led to a short term (50,200 years in the future) reduction in n1, to below zero under certain circumstances, recovering to an asymptote of about 0·5,1. At Northparkes n1 asymptoted to about 0·6, with no negative transients predicted. The m1 and n1 parameters predicted for Ranger were shown to be consistent with field data from a 10-year-old armoured hillslope and consistent with published relationships between erodibility and rock content for natural hillslopes. Copyright © 2007 John Wiley & Sons, Ltd. [source] Discussion of landslide self-organized criticality and the initiation of debris flowEARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2007Chen Chien-Yuan Abstract The study contains descriptions of landslides and debris flows in a small upland catchment in Taiwan between 1986 and 2004. This catchment, the Chushui Creek, is situated near the epicentre of the 1999 M7·6 Chi-Chi earthquake. This is an area with high background erosion rate. The Chi-Chi earthquake caused a sharp increase in the rate of mass wasting in the epicentral area, and the data presented in this study illustrates the geomorphic change associated with the earthquake. The measurements of the geometry of the trunk stream of the Chushui catchment also show its change due to the impact of a strong typhoon in 1996. Two channel reaches that were affected by separate debris flows during this event were identified. Each reach has three sections: scour, transfer and deposition. Cross profiles of these sections show a systematic change from V-shaped bedrock channel in the scour areas to flat-floored channel in the transfer and deposition areas. Debris flows also occurred on other occasions in this channel, and their frequency has increased since the 1999 earthquake. In addition, this study contains precise geographic and statistical descriptions of the landslides triggered by three typhoons and an earthquake that affected the catchment since 1996. The total landslide area is measured for different time intervals, and a marked increase in landslide incidence is found after the 1999 earthquake. Frequency,area plots of the 126 landslides in the catchment indicate a power-law scaling with an exponent of about -1·5 of these quantities, as has been observed in other studies. We propose that a link exists between landslide frequency,area distributions and initialization of debris flow in the catchment. It may be classified as a self-organized criticality process with a critical frequency,area distribution for the landslide population. In this case, the landslide frequency,area distribution is useful in quantifying the severity of the trigger and the contribution of landslides to debris flow. Copyright © 2006 John Wiley & Sons, Ltd. [source] Physical modelling of fault scarp degradation under freeze,thaw cyclesEARTH SURFACE PROCESSES AND LANDFORMS, Issue 14 2006M. Font Abstract Physical modelling has been developed in order to simulate the effects of periglacial erosion processes on the degradation of slopes and scarps. Data from 41 experimental freeze,thaw cycles are presented. They attest to the efficiency of periglacial processes that control both erosion and changes in scarp morphology: (i) cryoexpulsion leads to an increase of scarp surface roughness and modifies significantly the internal structure of the active layer; (ii) combined effects of frost creep and gelifluction lead to slow and gradual downslope displacements of the active layer (0·3 cm/cycle); (iii) debris flows are associated with the most significant changes in scarp morphology and are responsible for the highest rate of scarp erosion; (iv) quantification of the erosion rate gives values close to 1 cm3 cm,2 for 41 freeze,thaw cycles. These experimental results are consistent with field data acquired along the La Hague fault scarp (Normandy, France) where an erosion rate of 4·6 ± 1 m3 m,2 per glacial stage has been computed from the volume of natural slope deposits stored during the Weichselian glacial stage. These results show that moist periglacial erosion processes could lead to an underestimation of Plio-Quaternary deformation in the mid-latitudes. Copyright © 2006 John Wiley & Sons, Ltd. [source] Contribution of deep-seated bedrock landslides to erosion of a glaciated basin in southern AlaskaEARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2005Ann M. Arsenault Abstract Landslides represent a key component of catchment-scale denudation, though their relative contribution to the erosion of glaciated basins is not well known. Bedrock landslide contribution was investigated on the surface of one of eleven glaciers on a glaciated ridge in the Chugach-St Elias Range of southern Alaska, where the debris from four major landslides is easily distinguished from moraines and other supraglacial material. A series of aerial and satellite photos from 1972 to 2000 and field observations in 2001 and 2002 indicate that three of four landslides have fallen onto the surface of the glacier since about 1978. The landslides, which originated from the steeply dipping (60,70°) bedrock walls, were deposited onto the glacier in the ablation zone and are currently being transported downstream supraglacially. Individual glacial valleys with topographic relief of ,400 m are cut into high-grade metamorphic rock characterized by a steep north-dipping foliation and fractured by numerous large joints. Measurements of landslide area and average thickness obtained from high-resolution survey data indicate a total landslide volume of ,2·3 × 105 m3. This volume suggests a basin-averaged erosion rate from landslides of 0·48 mm a,1. An overall basin-scale erosion rate of 0·7 to 1·7 mm a,1 can be inferred, but depends on the percentage of the total-basin sediment yield contributed by supraglacial sources. A mean rockwall retreat rate of 6·7 mm a,1 is calculated and is considerably higher than published rates, which range from 0·04 to 4·0 mm a,1. Controls on landslide generation include seismicity, freeze,thaw processes, topography, rock strength, and debuttressing. It is likely all of these factors contribute to failure, although the primary controls for the landslides in this study are thought to be rock strength and topography. The absence of landslides on ten of the eleven glaciers on this ridge is attributed to landslide magnitude,frequency relationships and short temporal scale of this study. Large-volume bedrock landslides (>100 000 m3) may have low frequency, occurring less than once in a 55-year time frame. Copyright © 2005 John Wiley & Sons, Ltd. [source] Network-scale dynamics of grain-size sorting: implications for downstream fining, stream-profile concavity, and drainage basin morphologyEARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2004Nicole M. Gasparini Abstract We explore the link between channel-bed texture and river basin concavity in equilibrium catchments using a numerical landscape evolution model. Theory from homogeneous sediment transport predicts that river basin concavity directly increases with bed sediment size. If the effective grain size on a river bed governs its concavity, then natural phenomena such as grain-size sorting and channel armouring should be linked to concavity. We examine this hypothesis by allowing the bed sediment texture to evolve in a transport-limited regime using a two grain-size mixture of sand and gravel. Downstream ,ning through selective particle erosion is produced in equilibrium. As the channel-bed texture adjusts downstream so does the local slope. Our model predicts that it is not the texture of the original sediment mixture that governs basin concavity. Rather, concavity is linked to the texture of the sorted surface layer. Two different textural regimes are produced in the experiments: a transitional regime where the mobility of sand and gravel changes with channel-bed texture, and a sand-dominated region where the mobility of sand and gravel is constant. The concavity of these regions varies depending on the median gravel- or sand-grain size, erosion rate, and precipitation rate. The results highlight the importance of adjustments in both surface texture and slope in natural rivers in response to changes in ,uvial and sediment inputs throughout a drainage network. This adjustment can only be captured numerically using multiple grain sizes or empirical downstream ,ning rules. Copyright © 2004 John Wiley & Sons, Ltd. [source] Quantifying prehistoric soil erosion,A review of soil loss methods and their application to a Celtic square enclosure (Viereckschanze) in Southern GermanyGEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 8 2007Matthias Leopold This paper discusses the strengths and weaknesses of three different methods for quantifying prehistoric soil erosion. Method A estimates erosion by determining the amount of colluvium stored downhill. Method B involves reconstructing a former erosion surface using truncated soil horizons. Method C compares the elevation of a paleosol beneath an earthwork with the modern surface in the surrounding area. Each method was applied to a Celtic earthwork (Viereckschanze) at Poign (near Regensburg) in Southern Germany in order to cross-check the different results. For an erosion area of 3.6 ha and during 300 years of agricultural usage, Method A calculates a minimum erosion rate of 20.8 t/ha/a. Method B computes 10 t/ha/a of soil loss. Method C yields the highest rate of erosion with 24.2 t/ha/a. We have confidence in Method C, which implies an underassesment of soil loss in using methods A or B. © 2007 Wiley Periodicals, Inc. [source] First-year post-fire erosion rates in Bitterroot National Forest, Montana,HYDROLOGICAL PROCESSES, Issue 8 2007Kevin M. Spigel Abstract Accelerated runoff and erosion commonly occur following forest fires due to combustion of protective forest floor material, which results in bare soil being exposed to overland flow and raindrop impact, as well as water repellent soil conditions. After the 2000 Valley Complex Fires in the Bitterroot National Forest of west-central Montana, four sets of six hillslope plots were established to measure first-year post-wildfire erosion rates on steep slopes (greater than 50%) that had burned with high severity. Silt fences were installed at the base of each plot to trap eroded sediment from a contributing area of 100 m2. Rain gauges were installed to correlate rain event characteristics to the event sediment yield. After each sediment-producing rain event, the collected sediment was removed from the silt fence and weighed on site, and a sub-sample taken to determine dry weight, particle size distribution, organic matter content, and nutrient content of the eroded material. Rainfall intensity was the only significant factor in determining post-fire erosion rates from individual storm events. Short duration, high intensity thunderstorms with a maximum 10-min rainfall intensity of 75 mm h,1 caused the highest erosion rates (greater than 20 t ha,1). Long duration, low intensity rains produced little erosion (less than 0·01 t ha,1). Total C and N in the collected sediment varied directly with the organic matter; because the collected sediment was mostly mineral soil, the C and N content was small. Minimal amounts of Mg, Ca, and K were detected in the eroded sediments. The mean annual erosion rate predicted by Disturbed WEPP (Water Erosion Prediction Project) was 15% less than the mean annual erosion rate measured, which is within the accuracy range of the model. Published in 2007 by John Wiley & Sons, Ltd. [source] Runoff and suspended sediment yields from an unpaved road segment, St John, US Virgin IslandsHYDROLOGICAL PROCESSES, Issue 1 2007Carlos E. Ramos-Scharrón Abstract Unpaved roads are believed to be the primary source of terrigenous sediments being delivered to marine ecosystems around the island of St John in the eastern Caribbean. The objectives of this study were to: (1) measure runoff and suspended sediment yields from a road segment; (2) develop and test two event-based runoff and sediment prediction models; and (3) compare the predicted sediment yields against measured values from an empirical road erosion model and from a sediment trap. The runoff models use the Green,Ampt infiltration equation to predict excess precipitation and then use either an empirically derived unit hydrograph or a kinematic wave to generate runoff hydrographs. Precipitation, runoff, and suspended sediment data were collected from a 230 m long, mostly unpaved road segment over an 8-month period. Only 3,5 mm of rainfall was sufficient to initiate runoff from the road surface. Both models simulated similar hydrographs. Model performance was poor for storms with less than 1 cm of rainfall, but improved for larger events. The largest source of error was the inability to predict initial infiltration rates. The two runoff models were coupled with empirical sediment rating curves, and the predicted sediment yields were approximately 0·11 kg per square meter of road surface per centimetre of precipitation. The sediment trap data indicated a road erosion rate of 0·27 kg m,2 cm,1. The difference in sediment production between these two methods can be attributed to the fact that the suspended sediment samples were predominantly sand and silt, whereas the sediment trap yielded mostly sand and gravel. The combination of these data sets yields a road surface erosion rate of 0·31 kg m,2 cm,1, or approximately 36 kg m,2 year,1. This is four orders of magnitude higher than the measured erosion rate from undisturbed hillslopes. The results confirm the importance of unpaved roads in altering runoff and erosion rates in a tropical setting, provide insights into the controlling processes, and provide guidance for predicting runoff and sediment yields at the road-segment scale. Copyright © 2006 John Wiley & Sons, Ltd. [source] Quantitative evaluation of strategies for erosion control on a railway embankment batterHYDROLOGICAL PROCESSES, Issue 17 2001Y. Gyasi-Agyei Abstract Strategies for erosion control on a railway embankment batter (side slope) are quantitatively evaluated in this paper. The strategies were centred on control (,do nothing' treatment), grass seeding, gypsum application, jute mat (an erosion control blanket) placement and planting hedgerows of Monto vetiver grass. Rainfall and runoff were monitored at 1 min intervals on 10 m wide embankment batter plots during 1998 and 1999. Total bedload and suspended sediment eroded from the plots were also measured but only for a group of storm events within sampling intervals. It has been demonstrated that vetiver grass is not cost-effective in controlling erosion on railway batters within Central Queensland region. Seeding alone could cause 60% reduction in the erosion rate compared with the control treatment. Applying gypsum to the calcium-deficient soil before seeding yielded an additional 25% reduction in the erosion rate. This is the result, primarily, of 100% grass cover establishment within seven months of sowing. Therefore, for railway embankment batter erosion control, the emphasis needs to be on rapid establishment of 100% grass cover. For rapid establishment of grass cover, irrigation is necessary during the initial stages of growth as the rainfall is unpredictable and the potential evaporation exceeds rainfall in the study region. The risk of seeds and fertilizers being washed out by short-duration and high-intensity rainfall events during the establishment phase may be reduced by the use of erosion control blankets on sections of the batters. Accidental burning of grasses on some plots caused serious erosion problems, resulting in very slow recovery of grass growth. It is therefore recommended that controlled burning of grasses on railway batters should be avoided to protect batters from being exposed to severe erosion. Copyright © 2001 John Wiley & Sons, Ltd. [source] Numerical calculations of erosion in an abrupt pipe contraction of different contraction ratiosINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1 2004M. A. Habib Abstract Erosion predictions in a pipe with abrupt contraction of different contraction ratios for the special case of two-phase (liquid and solid) turbulent flow with low particle concentration are presented. A mathematical model based on the time-averaged governing equations of 2-D axi-symmetric turbulent flow is used for the calculations of the fluid velocity field (continuous phase). The particle-tracking model of the solid particles is based on the solution of the governing equation of each particle motion taking into consideration the effect of particle rebound behaviour. Models of erosion were used to predict the erosion rate in mg/g. The effect of Reynolds number and flow direction with respect to the gravity was investigated for three contraction geometries considering water flow in a carbon steel pipe. The results show that the influence of the contraction ratio on local erosion is very significant. However, this influence becomes insignificant when the average erosion rates over the sudden contraction area are considered. The results also indicate the significant influence of inlet velocity variations. The influence of buoyancy is significant for the cases of low velocity of the continuous flow. A threshold velocity below which erosion may be neglected was indicated. Copyright © 2004 John Wiley & Sons, Ltd. [source] Interaction of metamorphism, deformation and exhumation in large convergent orogensJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2002R. A. Jamieson Abstract Coupled thermal-mechanical models are used to investigate interactions between metamorphism, deformation and exhumation in large convergent orogens, and the implications of coupling and feedback between these processes for observed structural and metamorphic styles. The models involve subduction of suborogenic mantle lithosphere, large amounts of convergence (, 450 km) at 1 cm yr,1, and a slope-dependent erosion rate. The model crust is layered with respect to thermal and rheological properties , the upper crust (0,20 km) follows a wet quartzite flow law, with heat production of 2.0 ,W m,3, and the lower crust (20,35 km) follows a modified dry diabase flow law, with heat production of 0.75 ,W m,3. After 45 Myr, the model orogens develop crustal thicknesses of the order of 60 km, with lower crustal temperatures in excess of 700 °C. In some models, an additional increment of weakening is introduced so that the effective viscosity decreases to 1019 Pa.s at 700 °C in the upper crust and 900 °C in the lower crust. In these models, a narrow zone of outward channel flow develops at the base of the weak upper crustal layer where T,600 °C. The channel flow zone is characterised by a reversal in velocity direction on the pro-side of the system, and is driven by a depth-dependent pressure gradient that is facilitated by the development of a temperature-dependent low viscosity horizon in the mid-crust. Different exhumation styles produce contrasting effects on models with channel flow zones. Post-convergent crustal extension leads to thinning in the orogenic core and a corresponding zone of shortening and thrust-related exhumation on the flanks. Velocities in the pro-side channel flow zone are enhanced but the channel itself is not exhumed. In contrast, exhumation resulting from erosion that is focused on the pro-side flank of the plateau leads to ,ductile extrusion' of the channel flow zone. The exhumed channel displays apparent normal-sense offset at its upper boundary, reverse-sense offset at its lower boundary, and an ,inverted' metamorphic sequence across the zone. The different styles of exhumation produce contrasting peak grade profiles across the model surfaces. However, P,T,t paths in both cases are loops where Pmax precedes Tmax, typical of regional metamorphism; individual paths are not diagnostic of either the thickening or the exhumation mechanism. Possible natural examples of the channel flow zones produced in these models include the Main Central Thrust zone of the Himalayas and the Muskoka domain of the western Grenville orogen. [source] Investigating the surface process response to fault interaction and linkage using a numerical modelling approachBASIN RESEARCH, Issue 3 2006P.A. Cowie ABSTRACT In order to better understand the evolution of rift-related topography and sedimentation, we present the results of a numerical modelling study in which elevation changes generated by extensional fault propagation, interaction and linkage are used to drive a landscape evolution model. Drainage network development, landsliding and sediment accumulation in response to faulting are calculated using CASCADE, a numerical model developed by Braun and Sambridge, and the results are compared with field examples. We first show theoretically how the ,fluvial length scale', Lf, in the fluvial incision algorithm can be related to the erodibility of the substrate and can be varied to mimic a range of river behaviour between detachment-limited (DL) and transport-limited (TL) end-member models for river incision. We also present new hydraulic geometry data from an extensional setting which show that channel width does not scale with drainage area where a channel incises through an area of active footwall uplift. We include this information in the coupled model, initially for a single value of Lf, and use it to demonstrate how fault interaction controls the location of the main drainage divide and thus the size of the footwall catchments that develop along an evolving basin-bounding normal fault. We show how erosion by landsliding and fluvial incision varies as the footwall area grows and quantify the volume, source area, and timing of sediment input to the hanging-wall basin through time. We also demonstrate how fault growth imposes a geometrical control on the scaling of river discharge with downstream distance within the footwall catchments, thus influencing the incision rate of rivers that drain into the hanging-wall basin. Whether these rivers continue to flow into the basin after the basin-bounding fault becomes fully linked strongly depends on the value of Lf. We show that such rivers are more likely to maintain their course if they are close to the TL end member (small Lf); as a river becomes progressively more under supplied, i.e. the DL end member (large Lf), it is more likely to be deflected or dammed by the growing fault. These model results are compared quantitatively with real drainage networks from mainland Greece, the Italian Apennines and eastern California. Finally, we infer the calibre of sediments entering the hanging-wall basin by integrating measurements of erosion rate across the growing footwall with the variation in surface processes in space and time. Combining this information with the observed structural control of sediment entry points into individual hanging-wall depocentres we develop a greater understanding of facies changes associated with the rift-initiation to rift-climax transition previously recognised in syn-rift stratigraphy. [source] How does alluvial sedimentation at range fronts modify the erosional dynamics of mountain catchments?BASIN RESEARCH, Issue 3 2005S. Carretier At the geological time scale, the way in which the erosion of drainage catchments responds to tectonic uplift and climate changes depends on boundary conditions. In particular, sediment accumulation and erosion occurring at the edge of mountain ranges should influence the base level of mountain catchments, as well as sediment and water discharges. In this paper, we use a landform evolution model (LEM) to investigate how the presence of alluvial sedimentation at range fronts affects catchment responses to climatic or tectonic changes. This approach is applied to a 25 km × 50 km domain, in which the central part is uplifted progressively to simulate the growth of a small mountain range. The LEM includes different slope and river processes that can compete with each other. This competition leads to ,transport-limited', ,detachment-limited' or ,mixed' transport conditions in mountains at dynamic equilibrium. In addition, two end-member algorithms (the channellized-flow and the sheet-flow regimes) have been included for the alluvial fan-flow regime. The three transport conditions and the two flow algorithms represent six different models for which the responses to increase of rock uplift rate and/or cyclic variation of the precipitation rate are investigated. Our results indicate that addition of an alluvial apron increases the long-term mountain denudation. In response to uplift, mountain rivers adapt their profile in two successive stages; first by propagation of an erosion wave and then by slowly increasing their channel gradients. During the second stage, the erosion rate is almost uniform across the catchment area at any one time, which suggests that dynamic equilibrium has been reached, although the balance between erosion and rock uplift rates has not yet been achieved. This second stage is initiated by the uplift of the mountain river outlets because of sedimentation aggradation at the mountain front. The response time depends on the type of water flow imposed on the alluvial fans domains (× by 1.5 for channelized flow regime and by 10 for the sheet flow one). Cyclic variations of precipitation rate generate cyclic incisions in the alluvial apron. These incision pulses create knick-points in the river profile in the case of ,detachment-limited' and ,mixed' river conditions, which could be mistaken for tectonically induced knick-points. ,Transport-limited' conditions do not create such knick-points, but nevertheless trigger erosion in catchments. The feedbacks linked to sedimentation and erosion at range front can therefore control catchment incision or aggradation. In addition, random river captures in the range front trigger auto-cyclic erosion pulses in the catchment, capable of generating incision,aggradation cycles. [source] Modelling detrital cooling-age populations: insights from two Himalayan catchmentsBASIN RESEARCH, Issue 3 2003I. D. Brewer The distribution of detrital mineral cooling ages in river sediment provides a proxy record for the erosional history of mountain ranges. We have developed a numerical model that predicts detrital mineral age distributions for individual catchments in which particle paths move vertically toward the surface. Despite a restrictive set of assumptions, the model permits theoretical exploration of the effects of thermal structure, erosion rate, and topography on cooling ages. Hypsometry of the source-area catchment is shown to exert a fundamental control on the frequency distribution of bedrock and detrital ages. We illustrate this approach by generating synthetic 40Ar/39Ar muscovite age distributions for two catchments with contrasting erosion rates in central Nepal and then by comparing actual measured cooling-age distributions with the synthetic ones. Monte Carlo sampling is used to assess the mismatch between observed and synthetic age distributions and to explore the dependence of that mismatch on the complexity of the synthetic age signal and on the number of grains analysed. Observed detrital cooling ages are well matched by predicted ages for a more slowly eroding Himalayan catchment. A poorer match for a rapidly eroding catchment may result from some combination of large analytical uncertainties in the detrital ages and inhomogeneous erosion rates within the basin. Such mismatches emphasize the need for more accurate thermal and kinematic models and for sampling strategies that are adapted to catchment-specific geologic and geomorphic conditions. [source] Interactions between onshore bedrock-channel incision and nearshore wave-base erosion forced by eustasy and tectonicsBASIN RESEARCH, Issue 2 2002N.P. Snyder We explore the response of bedrock streams to eustatic and tectonically induced fluctuations in base level. A numerical model coupling onshore fluvial erosion with offshore wave-base erosion is developed. The results of a series of simulations for simple transgressions with constant rate of sea-level change (SLR) show that response depends on the relative rates of rock uplift (U) and wave-base erosion (,w). Simple regression runs highlight the importance of nearshore bathymetry. Shoreline position during sea-level fall is set by the relative rate of base-level fall (U-SLR) and ,w, and is constant horizontally when these two quantities are equal. The results of models forced by a realistic Late Quaternary sea-level curve are presented. These runs show that a stable shoreline position cannot be obtained if offshore uplift rates exceed ,w. Only in the presence of a relatively stable shoreline position, fluvial profiles can begin to approximate a steady-state condition, with U balanced by fluvial erosion rate (,f). In the presence of a rapid offshore decrease in rock-uplift rate (U), short (,5 km) fluvial channels respond to significant changes in rock-uplift rate in just a few eustatic cycles. The results of the model are compared to real stream-profile data from the Mendocino triple junction region of northern California. The late Holocene sea-level stillstand response exhibited by the simulated channels is similar to the low-gradient mouths seen in the California streams. [source] 10Be dating of Younger Dryas Salpausselkä I formation in FinlandBOREAS, Issue 4 2000SILVIO TSCHUDI Boulders of the Younger Dryas Salpausselkä I (Ss I) formation west of Lahti, southern Finland, were sampled for surface exposure dating. The 10Be concentrations, determined by accelerator mass spectrometry, yield minimum exposure ages of 11 930 ± 950, 11 220 ± 890, 11 050 ± 910 and 11 540 ± 990 years, using recently published production rates scaled for latitude and elevation. This includes a correction to the production rate resulting from postglacial uplift of the Fennoscandian lithosphere (i.e. changing elevation) during the time of exposure. The error-weighted mean exposure age of 11 420 ± 470 years of the analysed boulders agrees with previous varve dates of Ss I, which range from 11 680 to 11 430 calendar years BP. However, erosion has to be taken into account as a process affecting rock surfaces and therefore influencing exposure ages. Available information suggests an erosion rate of 5 mm/kyr, which increases the error-weighted mean exposure age to a value of 11 610 ± 470 years. Within the errors, the formation of Ss I in the Vesala area west of Lahti falls into the Younger Dryas time bracket, as defined by the GRIP and GISP 2 ice core (Greenland). [source] Edge-roundness of boulders of Torridonian Sandstone (northwest Scotland): applications for relative dating and implications for warm and cold climate weathering ratesBOREAS, Issue 2 2010MARTIN P. KIRKBRIDE Kirkbride, M.P. & Bell, C.M. 2009: Edge-roundness of boulders of Torridonian Sandstone (northwest Scotland): applications for relative dating and implications for warm and cold climate weathering rates. Boreas, 10.1111/j. 1502-3885.2009.00131.x. ISSN 0300-9483. The relative ages of late Quaternary morainic and rock avalanche deposits on Late Precambrian Torridonian Sandstone are determined from the characteristic edge-roundness of constituent boulders. Because weathering of sandstone is manifest as edge-rounding by granular disintegration, a relative chronology can be derived by measuring the effective radii of curvature of a sample of boulder edges. Thirteen samples totalling 597 individual boulder edges fall into two statistically distinct groups. Moraines of inferred Younger Dryas age (12.9,11.5 kyr BP) are distinguished from moraines of the Wester Ross Re-advance (,14.0 kyr BP). One moraine previously assumed to be of Younger Dryas age is reassigned to the older group. The method allows spatial extrapolation of deposit ages from dated sites where lithological and sampling criteria are met. Calculated rates of edge-rounding imply that granular disintegration was several times more rapid during cold stadial climates than during the Holocene. Used as a proxy for boulder ,erosion rate', this indicates that surface loss of grains in glacial climates exceeds that during interglacials by a factor of 2,5, with implications for the calculation of exposure ages from cosmogenic nuclides. [source] Climate-driven decrease in erosion in extant Mediterranean badlandsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2010Michèle L. Clarke Abstract Badland areas provide some of the highest erosion rates globally. Most studies of erosion have insufficient lengths of record to interrogate the impacts of decadal-scale changes in precipitation on rates of badland erosion in regions such as the Mediterranean, which are known to be sensitive to land degradation and desertification. Erosion measurements, derived from field monitoring using erosion pins, in southern Italy during the period 1974,2004 are used to explore the impacts of changing precipitation patterns on badland erosion. Erosion on badland inter-rill areas is strongly correlated with cumulative rainfall over each monitoring period. Annual precipitation has a substantial dynamic range, but both annual and winter (December, January, February) rainfall amounts in southern Italy show a steady decrease over the period 1970,2000. The persistence of positive values of the winter North Atlantic Oscillation index in the period 1980,2000 is correlated with a reduction in the winter rainfall amounts. Future climate scenarios show a reduction in annual rainfall across the western and central Mediterranean which is likely to result in a further reduction in erosion rates in existing badlands. Copyright © 2010 John Wiley & Sons, Ltd. [source] A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution modelsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2010GR Hancock Abstract Landscape evolution models provide a way to determine erosion rates and landscape stability over times scales from tens to thousands of years. The SIBERIA and CAESAR landscape evolution models both have the capability to simulate catchment,wide erosion and deposition over these time scales. They are both cellular, operate over a digital elevation model of the landscape, and represent fluvial and slope processes. However, they were initially developed to solve research questions at different time and space scales and subsequently the perspective, detail and process representation vary considerably between the models. Notably, CAESAR simulates individual events with a greater emphasis on fluvial processes whereas SIBERIA averages erosion rates across annual time scales. This paper describes how both models are applied to Tin Camp Creek, Northern Territory, Australia, where soil erosion rates have been closely monitored over the last 10 years. Results simulating 10,000 years of erosion are similar, yet also pick up subtle differences that indicate the relative strengths and weaknesses of the two models. The results from both the SIBERIA and CAESAR models compare well with independent field data determined for the site over different time scales. Representative hillslope cross-sections are very similar between the models. Geomorphologically there was little difference between the modelled catchments after 1000 years but significant differences were revealed at longer simulation times. Importantly, both models show that they are sensitive to input parameters and that hydrology and erosion parameter derivation has long-term implications for sediment transport prediction. Therefore selection of input parameters is critical. This study also provides a good example of how different models may be better suited to different applications or research questions. Copyright © 2010 John Wiley & Sons, Ltd and Commonwealth of Australia [source] A mathematical model for steady-state regolith production at constant erosion rateEARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2010M.I. Lebedeva Abstract It has been hypothesized that many soil profiles reach a steady-state thickness. In this work, such profiles were simulated using a one-dimensional model of reaction with advective and diffusive solute transport. A model ,rock' is considered, consisting of albite that weathers to kaolinite in the presence of chemically inert quartz. The model yields three different steady-state regimes of weathering. At the lowest erosion rates, a local-equilibrium regime is established where albite is completely depleted in the weathering zone. This regime is equivalent to the transport-limited regime described in the literature. With an increase in erosion rate, transition and kinetic regimes are established. In the transition regime, both albite and kaolinite are present in the weathering zone, but albite does not persist to the soil,air interface. In the weathering-limited regime, here called the kinetic regime, albite persists to the soil,air interface. The steady-state thickness of regolith decreases with increasing erosion rate in the local equilibrium and transition regimes, but in the kinetic regime, this thickness is independent of erosion rate. Analytical expressions derived from the model are used to show that regolith production rates decrease exponentially with regolith thickness. The steady-state regolith thickness increases with the Darcy velocity of the pore fluid, and in the local equilibrium regime may vary markedly with small variations in this velocity and erosion rate. In the weathering-limited regime, the temperature dependences for chemical weathering rates are related to the activation energy for the rate constant for mineral reaction and to the ,H of dissolution, while for local equilibrium regimes they are related to the ,H only. The model illustrates how geochemical and geomorphological observations are related for a simple compositional system. The insights provided will be useful in interpreting natural regolith profiles. Copyright © 2010 John Wiley & Sons, Ltd. [source] Quantifying periglacial erosion: insights on a glacial sediment budget, Matanuska Glacier, AlaskaEARTH SURFACE PROCESSES AND LANDFORMS, Issue 15 2009Colin R. O'Farrell Abstract Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8-yr record of proglacial suspended sediment yield. Non-glacial lowering rates range from 1·8 ± 0·5,mm,yr,1 to 8·5 ± 3·4,mm,yr,1 from estimates of rock fall and debris-flow fan volumes. An average erosion rate of 0·08 ± 0·04,mm,yr,1 from eight convex-up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice-cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106,t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106,t, corresponding to an erosion rate of 1·8 ± 0·6,mm,yr,1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub-basin (32% ice-cover) to determine an erosion rate of 12·1 ± 6·9,mm,yr,1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice-free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd. [source] Comment on ,A transport-distance approach to scaling erosion rates: III.EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2009Evaluating scaling characteristics of Mahleran' No abstract is available for this article. [source] Evaluation of the PESERA model in two contrasting environmentsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2009F. Licciardello Abstract The performance of the Pan-European Soil Erosion Risk Assessment (PESERA) model was evaluated by comparison with existing soil erosion data collected in plots under different land uses and climate conditions in Europe. In order to identify the most important sources of error, the PESERA model was evaluated by comparing model output with measured values as well as by assessing the effect of the various model components on prediction accuracy through a multistep approach. First, the performance of the hydrological and erosion components of PESERA was evaluated separately by comparing both runoff and soil loss predictions with measured values. In order to assess the performance of the vegetation growth component of PESERA, the predictions of the model based on observed values of vegetation ground cover were also compared with predictions based on the simulated vegetation cover values. Finally, in order to evaluate the sediment transport model, predicted monthly erosion rates were also calculated using observed values of runoff and vegetation cover instead of simulated values. Moreover, in order to investigate the capability of PESERA to reproduce seasonal trends, the observed and simulated monthly runoff and erosion values were aggregated at different temporal scale and we investigated at what extend the model prediction error could be reduced by output aggregation. PESERA showed promise to predict annual average spatial variability quite well. In its present form, short-term temporal variations are not well captured probably due to various reasons. The multistep approach showed that this is not only due to unrealistic simulation of cover and runoff, being erosion prediction also an important source of error. Although variability between the investigated land uses and climate conditions is well captured, absolute rates are strongly underestimated. A calibration procedure, focused on a soil erodibility factor, is proposed to reduce the significant underestimation of soil erosion rates. Copyright © 2009 John Wiley & Sons, Ltd. [source] Prescribed-fire effects on rill and interrill runoff and erosion in a mountainous sagebrush landscape ,EARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2009Frederick B. Pierson Abstract Changing fire regimes and prescribed-fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush-steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h,1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post-fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse-textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre-burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post-fire. Erosion remained above pre-burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post-fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre-existing strong soil-water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low-return-interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high-intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply-sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ,background' or fire-induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd. [source] Modelling increased soil cohesion due to roots with EUROSEMEARTH SURFACE PROCESSES AND LANDFORMS, Issue 13 2008S. De Baets Abstract As organic root exudates cause soil particles to adhere firmly to root surfaces, roots significantly increase soil strength and therefore also increase the resistance of the topsoil to erosion by concentrated flow. This paper aims at contributing to a better prediction of the root effects on soil erosion rates in the EUROSEM model, as the input values accounting for roots, presented in the user manual, do not account for differences in root density or root architecture. Recent research indicates that small changes in root density or differences in root architecture considerably influence soil erosion rates during concentrated flow. The approach for incorporating the root effects into this model is based on a comparison of measured soil detachment rates for bare and for root-permeated topsoil samples with predicted erosion rates under the same flow conditions using the erosion equation of EUROSEM. Through backwards calculation, transport capacity efficiencies and corresponding soil cohesion values can be assessed for bare and root-permeated topsoils respectively. The results are promising and present soil cohesion values that are in accordance with reported values in the literature for the same soil type (silt loam). The results show that grass roots provide a larger increase in soil cohesion as compared with tap-rooted species and that the increase in soil cohesion is not significantly different under wet and dry soil conditions, either for fibrous root systems or for tap root systems. Power and exponential relationships are established between measured root density values and the corresponding calculated soil cohesion values, reflecting the effects of roots on the resistance of the topsoil to concentrated flow incision. These relationships enable one to incorporate the root effect into the soil erosion model EUROSEM, through adapting the soil cohesion input value. A scenario analysis shows that the contribution of roots to soil cohesion is very important for preventing soil loss and reducing runoff volume. The increase in soil shear strength due to the binding effect of roots on soil particles is two orders of magnitude lower as compared with soil reinforcement achieved when roots mobilize their tensile strength during soil shearing and root breakage. Copyright © 2008 John Wiley & Sons, Ltd. [source] DWEPP: a dynamic soil erosion model based on WEPP source termsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2007N. S. Bulygina Abstract A new rangeland overland-flow erosion model was developed based on Water Erosion Prediction Project (WEPP) sediment source and sink terms. Total sediment yield was estimated for rainfall simulation plots from the WEPP field experiments as well as for a small watershed without a well developed channel network. Both WEPP and DWEPP gave a similar level of prediction accuracy for total event soil losses measured from both rainfall simulation and small watershed experiments. Predictions for plot and hillslope scale erosion simulations were in the range of expected natural variability. Sediment yield dynamics were plotted and compared with experimental results for plots and hillslope, and the results were satisfactory. Effects of cover and canopy on the predicted sediment yields were well represented by the model. DWEPP provides a new tool for assessing erosion rates and dynamics, has physically based erosion mechanics descriptions, is sensitive to treatment differences on the experimental plots and has a well developed parameter database inherited from WEPP. Copyright © 2006 John Wiley & Sons, Ltd. [source] |