Home About us Contact | |||
ERK Activity (erk + activity)
Selected AbstractsS -adenosylmethionine regulates dual-specificity mitogen-activated protein kinase phosphatase expression in mouse and human hepatocytes,HEPATOLOGY, Issue 6 2010Maria Lauda Tomasi Increased mitogen-activated protein kinase (MAPK) activity correlates with a more malignant hepatocellular carcinoma (HCC) phenotype. There is a reciprocal regulation between p44/42 MAPK (extracellular signal-regulated kinase [ERK]1/2) and the dual-specificity MAPK phosphatase MKP-1/DUSP1. ERK phosphorylates DUSP1, facilitating its proteasomal degradation, whereas DUSP1 inhibits ERK activity. Methionine adenosyltransferase 1a (Mat1a) knockout (KO) mice express hepatic S -adenosylmethionine (SAM) deficiency and increased ERK activity and develop HCC. The aim of this study was to examine whether DUSP1 expression is regulated by SAM and if so, elucidate the molecular mechanisms. Studies were conducted using Mat1a KO mice livers, cultured mouse and human hepatocytes, and 20S and 26S proteasomes. DUSP1 messenger RNA (mRNA) and protein levels were reduced markedly in livers of Mat1a KO mice and in cultured mouse and human hepatocytes with protein falling to lower levels than mRNA. SAM treatment protected against the fall in DUSP1 mRNA and protein levels in mouse and human hepatocytes. SAM increased DUSP1 transcription, p53 binding to DUSP1 promoter, and stability of its mRNA and protein. Proteasomal chymotrypsin-like and caspase-like activities were increased in Mat1a KO livers and cultured hepatocytes, which was blocked by SAM treatment. SAM inhibited chymotrypsin-like and caspase-like activities by 40% and 70%, respectively, in 20S proteasomes and caused rapid degradation of some of the 26S proteasomal subunits, which was blocked by the proteasome inhibitor MG132. SAM treatment in Mat1a KO mice for 7 days raised SAM, DUSP1, mRNA and protein levels and lowered proteosomal and ERK activities. Conclusion: DUSP1 mRNA and protein levels are lower in Mat1a KO livers and fall rapidly in cultured hepatocytes. SAM treatment increases DUSP1 expression through multiple mechanisms, and this may suppress ERK activity and malignant degeneration. HEPATOLOGY 2010 [source] Activation of the Raf-1/MEK/ERK cascade by bile acids occurs via the epidermal growth factor receptor in primary rat hepatocytesHEPATOLOGY, Issue 2 2002Yi-Ping Rao Bile acids have been reported to activate several different cell signaling cascades in rat hepatocytes. However, the mechanism(s) of activation of these pathways have not been determined. This study aims to determine which bile acids activate the Raf-1/MEK/ERK cascade and the mechanism of activation of this pathway. Taurodeoxycholic acid (TDCA) stimulated (+235%) the phosphorylation of p74 Raf-1 in a time (5 to 20 minutes) and concentration-dependent (10 to 100 ,mol/L) manner. Raf-1 and ERK activities were both significantly increased by most bile acids tested. Deoxycholic acid (DCA) was the best activator of ERK (3.6-fold). A dominant negative Ras (N17) construct expressed in primary hepatocytes prevented the activation of ERK by DCA. The epidermal growth factor receptor (EGFR)-specific inhibitor (AG1478) significantly inhibited (,81%) the activation of ERK by DCA. DCA rapidly (30 to 60 seconds) increased phosphorylation of the EGFR (,2-fold) and Shc (,4-fold). A dominant negative mutant of the EGFR (CD533) blocked the ability of DCA to activate ERK. In conclusion, these results show that DCA activates the Raf-1/MEK/ERK signaling cascade in primary hepatocytes primarily via an EGFR/Ras-dependent mechanism. [source] Inhibition of the p38 pathway upregulates macrophage JNK and ERK activities, and the ERK, JNK, and p38 MAP kinase pathways are reprogrammed during differentiation of the murine myeloid M1 cell lineJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2002J. Perry Hall Abstract Mitogen-activated protein (MAP) kinases have been implicated as important mediators of the inflammatory response. Here we report that c-Jun NH2 -terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAP kinase activities are reprogrammed during the IL-6 induced macrophage-like differentiation of the murine myeloid M1 cell line. Moreover, p38 inhibition upregulates JNK and ERK activity in M1 cells and in thioglycollate-elicited peritoneal exudate macrophages. IL-6-induced M1 differentiation also induces expression of the anti-inflammatory cytokine IL-10, and p38 inhibition potentiates this increase in IL-10 expression in an ERK-dependent manner. Thus, we speculate that during inflammatory conditions in vivo macrophage p38 may regulate JNK and ERK activity and inhibit IL-10 expression. These data highlight the importance of p38 in the molecular mechanisms of macrophage function. J. Cell. Biochem. 86: 1,11, 2002. © 2002 Wiley-Liss, Inc. [source] S -adenosylmethionine regulates dual-specificity mitogen-activated protein kinase phosphatase expression in mouse and human hepatocytes,HEPATOLOGY, Issue 6 2010Maria Lauda Tomasi Increased mitogen-activated protein kinase (MAPK) activity correlates with a more malignant hepatocellular carcinoma (HCC) phenotype. There is a reciprocal regulation between p44/42 MAPK (extracellular signal-regulated kinase [ERK]1/2) and the dual-specificity MAPK phosphatase MKP-1/DUSP1. ERK phosphorylates DUSP1, facilitating its proteasomal degradation, whereas DUSP1 inhibits ERK activity. Methionine adenosyltransferase 1a (Mat1a) knockout (KO) mice express hepatic S -adenosylmethionine (SAM) deficiency and increased ERK activity and develop HCC. The aim of this study was to examine whether DUSP1 expression is regulated by SAM and if so, elucidate the molecular mechanisms. Studies were conducted using Mat1a KO mice livers, cultured mouse and human hepatocytes, and 20S and 26S proteasomes. DUSP1 messenger RNA (mRNA) and protein levels were reduced markedly in livers of Mat1a KO mice and in cultured mouse and human hepatocytes with protein falling to lower levels than mRNA. SAM treatment protected against the fall in DUSP1 mRNA and protein levels in mouse and human hepatocytes. SAM increased DUSP1 transcription, p53 binding to DUSP1 promoter, and stability of its mRNA and protein. Proteasomal chymotrypsin-like and caspase-like activities were increased in Mat1a KO livers and cultured hepatocytes, which was blocked by SAM treatment. SAM inhibited chymotrypsin-like and caspase-like activities by 40% and 70%, respectively, in 20S proteasomes and caused rapid degradation of some of the 26S proteasomal subunits, which was blocked by the proteasome inhibitor MG132. SAM treatment in Mat1a KO mice for 7 days raised SAM, DUSP1, mRNA and protein levels and lowered proteosomal and ERK activities. Conclusion: DUSP1 mRNA and protein levels are lower in Mat1a KO livers and fall rapidly in cultured hepatocytes. SAM treatment increases DUSP1 expression through multiple mechanisms, and this may suppress ERK activity and malignant degeneration. HEPATOLOGY 2010 [source] Direct and indirect manipulation of the MEK-ERK pathway regulates the formation of a pericellular HA-dependent matrix by chick articular surface cells without modifying CD44 expresssionINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2004Edward R. Bastow Introduction Recent evidence suggests that hyaluronan (HA) facilitates the mechano-dependent joint cavity-forming process through the elaboration and retention of a HA-rich pericellular matrix in the developing joint interzone (IZ). The presumptive joint IZ phenotype shows a capacity to bind and synthesize HA and also exhibits elevated activated ERK, prior to synovial joint cavity formation (Lamb et al. 2001; Edwards et al. 1994; Dowthwaite et al. 1998). We have found that immobilization, which induces embryonic joint fusion with loss of the joint IZ phenotype, also reduces ERK activity levels in the IZ. As the signalling events regulating the synthesis and binding of HA have yet to be determined, we hypothesize that ERK activation plays a pivotal role in determining the presumptive joint IZ phenotype through HA synthetic and binding capacity. Materials and methods Chick articular surface (AS) cells were harvested from proximal tibiotarsal joints of embryos by collagenase digestion. Pericellular coat formation was assessed using the erythrocyte exclusion assay and cell-coat area ratios determined. ERK activity was modulated by transient transfection of GFP constructs of constitutively active (CA-) or dominant negative (DN-) forms of MEK, the direct upstream regulator of ERK or by treatment with the MEK inhibitor PD98059 (50 µm). ERK activation was monitored by immunochemistry. CD44 expression and ERK activation in PD98059-treated cells were monitored by immunoblotting and medium HA concentrations by ELISA. Results AS cells form large pericellular coats that are lost following hyaluronidase treatment and thus dependent upon HA for their construction. Treatment with PD98059 significantly reduced pericellular coat formation after 6 h. In parallel, we confirmed that PD98059 diminished active ERK expression without modifying overall levels of ERK, suggesting that the elaboration of large HA-pericellular coats is dependent upon MEK's activation of ERK. Western blot analysis of PD98059-treated cells showed that loss of pericellular coats was not, however, associated with any decreased levels of the cell surface HA receptor CD44. Although treatment with PD98059 did not change medium HA concentration after short times of exposure, at times (up to 6 h) during which coat loss was evident, prolonged treatment over 24 h significantly decreased medium HA concentration. Consistent with a role for ERK in pericellular coat formation, transfection with DN-MEK diminished, while CA-MEK increased, both active ERK expression and coat formation efficiency. We also found that, commensurate with this modification in coat forming efficiency, cells expressing DN-MEK exhibited a significant reduction in labelling of free HA on the cell surface. Discussion These studies extend our recent work to indicate that: (i) direct modulation of ERK activation by transfection with its endogenous upstream regulator modifies cell surface-associated HA (ii) PD98059-induced blockade of ERK activation restricts medium HA release and (iii) ERK-mediated changes in pericellular coat elaboration are independent of changes in cellular CD44 expression. These findings suggest an intimate relationship between ERK activation and the formation/retention of HA-rich pericellular matrices in vitro and highlight the role for ERK activation in regulating joint line-related differentiation. [source] Expression of Acid-Sensing Ion Channel 3 (ASIC3) in Nucleus Pulposus Cells of the Intervertebral Disc Is Regulated by p75NTR and ERK Signaling,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2007Yoshiyasu Uchiyama Abstract Although a recent study has shown that skeletal tissues express ASICs, their function is unknown. We show that intervertebral disc cells express ASIC3; moreover, expression is uniquely regulated and needed for survival in a low pH and hypoeromsotic medium. These findings suggest that ASIC3 may adapt disc cells to their hydrodynamically stressed microenvironment. Introduction: The nucleus pulposus is an avascular, hydrated tissue that permits the intervertebral disc to resist compressive loads to the spine. Because the tissue is hyperosmotic and avascular, the pH of the nucleus pulposus is low. To determine the mechanisms by which the disc cells accommodate to the low pH and hypertonicity, the expression and regulation of the acid sensing ion channel (ASIC)3 was examined. Materials and Methods: Expression of ASICs in cells of the intervertebral disc was analyzed. To study its regulation, we cloned the 2.8-kb rat ASIC3 promoter and performed luciferase reporter assays. The effect of pharmacological inhibition of ASICs on disc cell survival was studied by measuring MTT and caspase-3 activities. Results: ASIC3 was expressed in discal tissues and cultured disc cells in vitro. Because studies of neuronal cells have shown that ASIC3 expression and promoter activity is induced by nerve growth factor (NGF), we examined the effect of NGF on nucleus pulposus cells. Surprisingly, ASIC3 promoter activity did not increase after NGF treatment. The absence of induction was linked to nonexpression of tropomyosin-related kinase A (TrkA), a high-affinity NGF receptor, although a modest expression of p75NTR was seen. When treated with p75NTR antibody or transfected with dominant negative-p75NTR plasmid, there was significant suppression of ASIC3 basal promoter activity. To further explore the downstream mechanism of control of ASIC3 basal promoter activity, we blocked p75NTR and measured phospho extracellular matrix regulated kinase (pERK) levels. We found that DN-p75NTR suppressed NGF mediated transient ERK activation. Moreover, inhibition of ERK activity by dominant negative-mitogen activated protein kinase kinase (DN-MEK) resulted in a dose-dependent suppression of ASIC3 basal promoter activity, whereas overexpression of constitutively active MEK1 caused an increase in ASIC3 promoter activity. Finally, to gain insight in the functional importance of ASIC3, we suppressed ASIC activity in nucleus pulposus cells. Noteworthy, under both hyperosmotic and acidic conditions, ASIC3 served to promote cell survival and lower the activity of the pro-apoptosis protein, caspase-3. Conclusions: Results of this study indicate that NGF serves to maintain the basal expression of ASIC3 through p75NTR and ERK signaling in discal cells. We suggest that ASIC3 is needed for adaptation of the nucleus pulposus and annulus fibrosus cells to the acidic and hyperosmotic microenvironment of the intervertebral disc. [source] Mechanisms of inhibition of dehydroepiandrosterone upon corticosterone release from rat zona fasciculata-reticularis cells,JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Ling-Ling Chang Abstract We have demonstrated that dehydroepiandrosterone (DHEA) acts directly on rat zona fasciculata-reticularis (ZFR) cells to diminish corticosterone secretion by an inhibition of post-cAMP pathway, and decreases functions of steroidogenic enzymes after P450scc as well as steroidogenic acute regulatory (StAR) protein expression. However, the mechanisms by which DHEA engages with environmental messenger signals which translate into interfering StAR protein expression are still unclear. This study explored the effects of DHEA on the phosphorylation/activation of extracellular signal-regulated kinases (ERKs). ERK activation resulted in enhancing phosphorylation of steroidogenic factor-1 (SF-1) and increased StAR protein expression. ZFR cells were incubated in the presence or absence of adrenocorticotropin (ACTH), forskolin (FSK), 25-OH-cholesterol, U0126, and H89 at 37°C. The concentration of corticosterone released into the media was measured by radioimmunoassay (RIA). The cells were used to extract protein for Western blot analysis of ERKs or StAR protein expression or immunoprecipitation of SF-1 analysis. The results suggested that (1) ERK pathway of rat ZFR cells might be PKA dependent, (2) ERK activity was required for SF-1 phosphorylation to upregulate steroidogenesis in rat ZFR cells, and (3) DHEA did not affect ERK phosphorylation, however, it attenuated forskolin-stimulated SF-1 phosphorylation to affect StAR protein expression. J. Cell. Biochem. 104: 359,368, 2008. © 2007 Wiley-Liss, Inc. [source] TNF-, induction of lipolysis is mediated through activation of the extracellular signal related kinase pathway in 3T3-L1 adipocytes,,JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2003Sandra C. Souza Abstract Tumor necrosis factor-, (TNF-,) increases adipocyte lipolysis after 6,12 h of incubation. TNF-, has been demonstrated to activate mitogen-activated protein (MAP) kinases including extracellular signal-related kinase (ERK) and N-terminal-c-Jun-kinase (JNK) in different cell types. To determine if the MAP kinases have a role in TNF-,-induced lipolysis, 3T3-L1 adipocytes were treated with the cytokine (10 ng/ml), in the presence or absence of PD98059 or U0126 (100 µM), specific inhibitors of ERK activity. We demonstrated that U0126 or PD98059 blocked TNF-,-induced ERK activity and decreased TNF-,-induced lipolysis by 65 or 76% respectively. The peroxisome-proliferator-activated receptor , (PPAR,) agonists, rosiglitazone (ros), and 15-deoxy-,- 12,14 - prostaglandin J2 (PGJ2) have been demonstrated to block TNF-,-induced lipolysis. Pretreatment of adipocytes with these agents almost totally blocked TNF-,-induced ERK activation and reduced lipolysis by greater than 90%. TNF-, also stimulated JNK activity, which was not affected by PD98059 or PPAR, agonist treatment. The expression of perilipin, previously proposed to contribute to the mechanism of lipolysis, is diminished in response to TNF-, treatment. Pretreatment of adipocytes with PD98059 or ros significantly blocked the TNF-,-induced reduction of perilipin A protein level as determined by Western analysis. These data suggest that activation of the ERK pathway is an early event in the mechanism of TNF-,-induced lipolysis. © 2003 Wiley-Liss, Inc. [source] Inhibition of the p38 pathway upregulates macrophage JNK and ERK activities, and the ERK, JNK, and p38 MAP kinase pathways are reprogrammed during differentiation of the murine myeloid M1 cell lineJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2002J. Perry Hall Abstract Mitogen-activated protein (MAP) kinases have been implicated as important mediators of the inflammatory response. Here we report that c-Jun NH2 -terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAP kinase activities are reprogrammed during the IL-6 induced macrophage-like differentiation of the murine myeloid M1 cell line. Moreover, p38 inhibition upregulates JNK and ERK activity in M1 cells and in thioglycollate-elicited peritoneal exudate macrophages. IL-6-induced M1 differentiation also induces expression of the anti-inflammatory cytokine IL-10, and p38 inhibition potentiates this increase in IL-10 expression in an ERK-dependent manner. Thus, we speculate that during inflammatory conditions in vivo macrophage p38 may regulate JNK and ERK activity and inhibit IL-10 expression. These data highlight the importance of p38 in the molecular mechanisms of macrophage function. J. Cell. Biochem. 86: 1,11, 2002. © 2002 Wiley-Liss, Inc. [source] Sequestration of serum response factor in the hippocampus impairs long-term spatial memoryJOURNAL OF NEUROCHEMISTRY, Issue 2 2005Pramod K. Dash Abstract The formation of long-term memory has been shown to require protein kinase-mediated gene expression. One such kinase, mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), can lead to the phosphorylation of serum response factor (SRF) and Elk-1, enhancing the expression of target genes. However, a direct involvement of these transcription factors in memory storage has not been demonstrated. We have employed an oligonucleotide decoy technique to interrogate SRF and Elk-1. Previously, it has been shown that intra-amygdalal infusion of small double-stranded decoy oligonucleotides for nuclear factor-kappaB (NFkappaB) can impair long-term memory for fear-potentiated startle. Using this approach, we found that intra-hippocampal infusion of NFkappaB decoy oligonucleotides also impairs long-term spatial memory, consistent with a role for this factor in long-term memory storage. Decoy oligonucleotides containing the binding site for SRF, as confirmed by shift-western, did not influence memory acquisition but impaired long-term spatial memory. Analysis of search behavior during the transfer test revealed deficits consistent with a loss of precise platform location information. In contrast, oligonucleotides with a binding site for either Elk-1 or another target of ERK activity, SMAD3/SMAD4, did not interfere with memory formation or storage. These findings suggest that SRF-mediated gene expression is required for long-term spatial memory. [source] Protein phosphatase 2A,negative regulation of the protective signaling pathway of Ca2+/CaM-dependent ERK activation in cerebral ischemiaJOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2008Jie Zhao Abstract Extracellular-signal-regulated kinase (ERK) undergoes rapid inactivation following the intense activation evoked by cerebral ischemia and reperfusion. However, the precise mechanism of this inactivation has not been elucidated. To investigate how phosphatases regulate the ERK cascade following ischemia, the PP2A inhibitors cantharidin and okadaic acid were administrated to the CA1 subregion of the rat hippocampus. The resulting sustained ERK activity implies that PP2A is a major phosphatase contributing to the rapid inactivation, but not activation, of ERK following cerebral ischemia. The increase in PP2A activity induced by ceramide has a weak effect on the activation of Raf via dephosphorylation of Ser259 in response to ischemia. In contrast, ketamine (Keta) and cyclosporine A (CsA), two chemicals that block calcium signal in ischemia, decrease ERK activity by blocking Raf dephosphorylation of Ser259. We also observed that activation of an upstream protein, Ras-GRF, leads to calcium/calmodulin-dependent activation of the ERK signaling cascade in response to ischemic stimuli. In addition, the activity of cyclic AMP response element-binding protein (CREB) and estrogen receptor , (ER,), target proteins of ERK and protective elements against ischemic lesion, parallels the activity of ERK. These data indicate that PP2A plays a significant role in blocking the protective effect induced by the ERK kinase pathway and that fast inactivation of ERK is the result of cross talk between calcium/calmodulin-dependent, positively regulated signal cascades and a ceramide-dependent negative signaling pathway. © 2008 Wiley-Liss, Inc. [source] Integrins mediate ,-amyloid-induced cell-cycle activation and neuronal deathJOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2008Giuseppina Frasca Abstract Early intracellular events responsible for cell-cycle induction by ,-amyloid (A,) in neurons have not been identified yet. Extracellular signal,regulated kinases 1/2 (ERK1/2) have been identified in this pathway, and inhibition of ERK activity prevents cell-cycle activation and reduces neuronal death induced by A,. To identify upstream events responsible for ERK activation, attention has been focused on integrins. Treatment of SH-SY5Y cells, differentiated by long-term exposure to 10 ,M retinoic acid with a neutralizing anti-,1-integrin antibody significantly reduced A,-induced neuronal death. However, cell-cycle analysis showed that treatment with anti-,1-integrin per se produced changes in the distribution of cell populations, thus hampering any effect on A,-induced cell-cycle activation. 4-Amino-5-(4-chlorophenyl)-7(t-butyl)pyrazol(3,4- D)pyramide, an inhibitor of src protein kinases that colocalizes with focal adhesion kinase (FAK) and is involved in integrin signaling, was effective in reducing activation of the cell cycle and preventing induction of neuronal death by A, while inhibiting ERK1/2 phosphorylation. Similar results were obtained when FAK expression was down-regulated by siRNA silencing. The present study identifies a sequence of early events in the toxic effect of A, in neuronal cultures that involves interaction with integrins, activation of FAK/src, enhanced phosphorylation of ERK1/2, and induction of the cell cycle, all leading to neuronal death. © 2007 Wiley-Liss, Inc. [source] Long-Term Ethanol Exposure Impairs Neuronal Differentiation of Human Neuroblastoma Cells Involving Neurotrophin-Mediated Intracellular Signaling and in Particular Protein Kinase CALCOHOLISM, Issue 3 2009Julian Hellmann Background:, Revealing the molecular changes in chronic ethanol-impaired neuronal differentiation may be of great importance for understanding ethanol-related pathology in embryonic development but also in the adult brain. In this study, both acute and long-term effects of ethanol on neuronal differentiation of human neuroblastoma cells were investigated. We focused on several aspects of brain-derived neurotrophic factor (BDNF) signaling because BDNF activates the extracellular signal-regulated kinase (ERK) cascade, promoting neuronal differentiation including neurite outgrowth. Methods:, The effects of ethanol exposure on morphological differentiation, cellular density, neuronal marker proteins, basal ERK activity, and ERK responsiveness to BDNF were measured over 2 to 4 weeks. qRT-PCR and Western blotting were performed to investigate the expression of neurotrophin receptor tyrosin kinase B (TrkB), members of the ERK-cascade, protein kinase C (PKC) isoforms and Raf-Kinase-Inhibitor-Protein (RKIP). Results:, Chronic ethanol interfered with the development of a neuronal network consisting of cell clusters and neuritic bundles. Furthermore, neuronal and synaptic markers were reduced, indicating impaired neuronal differentiation. BDNF-mediated activation of the ERK cascade was found to be continuously impaired by ethanol. This could not be explained by expressional changes monitored for TrkB, Raf-1, MEK, and ERK. However, BDNF also activates PKC signaling which involves RKIP, which finally leads to ERK activation as well. Therefore, we hypothesized that ethanol impairs this branch of BDNF signaling. Indeed, both PKC and RKIP were significantly down-regulated. Conclusions:, Chronic ethanol exposure impaired neuronal differentiation of neuroblastoma cells and BDNF signaling, particularly the PKC-dependent branch. RKIP, acting as a signaling switch at the merge of the PKC cascade and the Raf/MEK/ERK cascade, was associated with neuronal differentiation and significantly reduced in ethanol treatment. Moreover, PKC expression itself was even more strongly reduced. In contrast, members of the Raf-1/MEK/ERK cascade were less affected and the observed changes were not associated with impaired differentiation. Thus, reduced RKIP and PKC levels and subsequently reduced positive feedback on ERK activation provide an explanation for the striking effects of long-term ethanol exposure on BDNF signal transduction and neuronal differentiation, respectively. [source] Positive crosstalk between ERK and p38 in melanoma stimulates migration and in vivo proliferationPIGMENT CELL & MELANOMA RESEARCH, Issue 1 2009Yeriel Estrada Summary Melanoma is one of the most therapy-resistant cancers. Activating mutations in BRAF and NRAS are the source of extracellular signal regulated protein kinase (ERK) pathway activation. We show that melanoma cell lines, originating in different metastatic sites, with BRAF or NRAS mutations, in addition to active mitogen activated protein kinase (MAPK),ERK, also have highly activated stress activated protein kinase (SAPK)-p38. This is in direct contrast to carcinoma cells in which the activity of the two kinases appears to be mutually exclusive; high level of p38 activity inhibits, through a negative feedback, ERK activity and prevents tumorigenesis. Melanomas are insensitive to ERK inhibition by p38 and utilize p38-signaling pathway for migration and growth in vivo. We found a positive functional loop linking the high ERK activity to surface expression of ,V,3-integrin. This integrin, by interacting with vitronectin, induces p38 activity and increases IL-8 production, enhancing cell migration. Because the negative loop from p38 to ERK is lost, the two kinases can remain simultaneously activated. Inhibition of ERK and p38 activities is more effective in blocking in vivo growth than inhibition of each kinase individually. Future therapies might have to consider targeting of both pathways. [source] R-Ras promotes tumor growth of cervical epithelial cellsCANCER, Issue 3 2003Héctor Rincón-Arano B.S. Abstract BACKGROUND R-Ras is 55% identical to H-Ras. However, these two oncogenes seem to have different tumor-transforming potential. R-Ras induced cell transformation in fibroblasts but not in other cell types. R-Ras also reportedly induces a more invasive phenotype in breast epithelial cells through integrin activation. The authors studied the mechanisms whereby R-Ras induces a malignant phenotype. METHODS Dominant negative (R-Ras43N) and constitutively active (R-Ras87L) mutants of R-Ras were stably transfected into human cervical epithelium C33A cells. Transfected cells were analyzed for adhesion, cell spreading, migration, and growth in culture and in nude mice. The activity of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI 3-K) also was determined by Western blot analysis and by in vitro kinase assays. RESULTS R-Ras87L-transfected cells, but not R-Ras43 N-transfected cells, had a higher growth rate in nude mice and in culture compared with control cells. None of the transfected C33A cells showed an increase in cell adhesion to fibronectin or collagen I, nor did they show an increment of ,1 integrin affinity. However, cells that expressed R-Ras87L, but not cells that expressed R-Ras 43N, presented a marked increase in cell spreading and migration through collagen-coated membranes. Increases in cell proliferation, spreading, and migration induced by R-Ras87L were inhibited by the PI 3-K inhibitor LY294002. In addition, PI 3-K activity, but not ERK activity, was increased only in cells that expressed R-Ras87L. CONCLUSIONS These data suggest that the oncogene R-Ras promotes tumor growth of cervical epithelial cells and increases their migration potential over collagen through a pathway that involves PI 3-K. Cancer 2003;97:575,85. © 2003 American Cancer Society. DOI 10.1002/cncr.11093 [source] New concepts regarding focal adhesion kinase promotion of cell migration and proliferationJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2006Braden D. Cox Abstract Focal adhesion kinase (FAK) is a non-receptor cytoplasmic tyrosine kinase that plays a key role in the regulation of proliferation and migration of normal and tumor cells. FAK associates with integrin receptors and recruits other molecules to the site of this interaction thus forming a signaling complex that transmits signals from the extracellular matrix to the cell cytoskeleton. Crk-associated substrate (CAS) family members appear to play a pivotal role in FAK regulation of cell migration. Cellular Src bound to FAK phosphorylates CAS proteins leading to the recruitment of a Crk family adaptor molecule and activation of a small GTPase and c-Jun N-terminal kinase (JNK) promoting membrane protrusion and cell migration. The relocalization of CAS and signaling through specific CAS family members appears to determine the outcome of this pathway. FAK also plays an important role in regulating cell cycle progression through transcriptional control of the cyclin D1 promoter by the Ets B and Kruppel-like factor 8 (KLF8) transcription factors. FAK regulation of cell cycle progression in tumor cells requires Erk activity, cyclin D1 transcription, and the cyclin-dependent kinase (cdk) inhibitor p27Kip1. The ability of FAK to integrate integrin and growth factor signals resulting in synergistic promotion of cell migration and proliferation, and its potential regulation by nuclear factor kappa B (NF,B) and p53 and a ubiquitously expressed inhibitory protein, suggest that it is remarkable in its capacity to integrate multiple extracellular and intracellular stimuli. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source] |