Epoxy Monomer (epoxy + monomer)

Distribution by Scientific Domains


Selected Abstracts


Use of Hydroxyl Functionalized (Meth)acrylic Cross-Linked Polymer Microparticles as Chain Transfer Agent in Cationic Photopolymerization of Cycloaliphatic Epoxy Monomer, 1

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 10 2003
Ludovic Valette
Abstract In the case of cationic-type photopolymerized epoxy networks, a new type of chain transfer agent based on hydroxyl functional acrylic cross-linked polymer microparticles (CPM, also called microgels) has been tested. The CPM functionality was obtained through hydroxyethyl acrylate (HEA) monomer, used as comonomer with butyl acrylate (BA) and hexane diol diacrylate (HDDA). Stabilizing monomers were also required for the synthesis of CPM. In order to compare their particular effects, 4 sets of CPM were synthesized with 4 different stabilizing agents, either hydroxyl functional or not. Consequently, two types of OH groups were present in the particles: primary groups coming from HEA and preferentially located in the particles, and optional hydroxyl groups due to the hydroxyl functional stabilizing agents which were mainly placed onto the particles' surface. The viscoelastic properties of the photopolymerized films have been used to obtain information about the chain transfer reaction and the network microstructure. In all cases, the rubber modulus, was improved because of the decrease of the number of dangling epoxy chains in the epoxy network. When hydroxyl groups were only present in the particles, the mobility of the linkages was assumed to be low, and the mechanical relaxation temperature, T,, strongly increased. However, CPM aggregation occurred at high CPM concentrations, lowering and T,. On the contrary, when OH groups were located both on the surface as well as inside the particles, no large CPM aggregation took place, even with [CPM],=,40 wt.-%. Nevertheless, the presumably higher mobility of the linkages on the particles' surface prevented any T, increase. The water absorption of all systems based on CPM was very low, around 2% whatever the concentration of chain transfer agent. Schematic description of the transfer reaction between a propagating cationic-type epoxy chain and a hydroxyl functional CPM. [source]


Effect of Nanoplatelets on the Rheological Behavior of Epoxy Monomers

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 2 2009
Luyi Sun
Abstract The effect of nanoplatelets on the rheological behavior of epoxy monomers with variations in nanoplatelet exfoliation level and aspect ratio was investigated. The results show that the presence of exfoliated nanoplatelets in epoxy can significantly influence viscosity and lead to shear-thinning phenomena, especially when the aspect ratio of the nanoplatelets is high. By employing the Krieger-Dougherty model, the effectiveness of nanoplatelets in altering epoxy rheological behavior was quantitatively described and compared with experimental findings. Possible physical reasons for the observed rheological behaviors are discussed. The implication of the present study for polymer nanocomposites processing is also addressed. [source]


A Facile Strategy for Preparing Self-Healing Polymer Composites by Incorporation of Cationic Catalyst-Loaded Vegetable Fibers

ADVANCED FUNCTIONAL MATERIALS, Issue 14 2009
Ding Shu Xiao
Abstract A two-component healing agent, consisting of epoxy-loaded microcapsules and an extremely active catalyst (boron trifluoride diethyl etherate, (C2H5)2O,·,BF3)), is incorporated into epoxy composites to provide the latter with rapid self-healing capability. To avoid deactivation of the catalyst during composite manufacturing, (C2H5)2O,·,BF3 is firstly absorbed by fibrous carriers (i.e., short sisal fibers), and then the fibers are coated with polystyrene and embedded in the epoxy matrix together with the encapsulated epoxy monomer. Because of gradual diffusion of the absorbed (C2H5)2O,·,BF3 from the sisal into the surrounding matrix, the catalyst is eventually distributed throughout the composites and acts as a latent hardener. Upon cracking of the composites, the epoxy monomer is released from the broken capsules, spreading over the cracked planes. As a result, polymerization, triggered by the dispersed (C2H5)2O,·,BF3, takes place and the damaged sites are rebonded. Since the epoxy,BF3 cure belongs to a cationic chain polymerization, the exact stoichiometric ratio of the reaction components required by other healing chemistries is no longer necessary. Only a small amount of (C2H5)2O,·,BF3 is sufficient to initiate very fast healing (e.g., a 76% recovery of impact strength is observed within 30,min at 20,°C). [source]


Some factors influencing exfoliation and physical property enhancement in nanoclay epoxy resins based on diglycidyl ethers of bisphenol A and F

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007
S. Ingram
Abstract An investigation of the factors influencing the degree of exfoliation of an organically modified clay in a series of epoxy resins is reported. The use of sonication, choice of curing agent, effect of the moisture content of the clay, and the cure temperature were examined. The dispersion was characterized using a combination of rheological measurements, X-ray diffraction, and dynamic mechanical thermal analysis. Rheological analysis of the clay dispersion in the epoxy monomer indicated that at high clay loads Herschel,Bulkley type behavior is followed. Higher cure temperatures and higher levels of clay moisture were found to influence the extent of exfoliation. Improvements in physical properties were observed through the addition of nanocomposites. The DGEBA/DDM and DEGEBA/DDS exhibited 2 and 4°C increase, respectively, in Tg per wt % of added clay. DGEBF showed virtually no enhancement. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source]


Synthesis of networked polymers with lithium counter cations from a difunctional epoxide containing poly(ethylene glycol) and an epoxide monomer carrying a lithium sulfonate salt moiety

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2010
Kozo Matsumoto
Abstract Poly(ethylene glycol)-based networked polymers that had lithium sulfonate salt structures on the network were prepared by heating a mixture of poly(ethylene glycol) diglycidyl ether (PEGGE), poly(ethylene glycol) bis(3-aminopropyl) terminated (PEGBA), and an ionic epoxy monomer, lithium 3-glycidyloxypropanesulfonate (LiGPS). Flexible self-standing networked polymer films showed high thermal stability, low crystallinity, low glass transition temperature, and good mechanical strength. The materials were ion conductive at room temperature even under a dry condition, although the ionic conductivity was rather low (10,6 to 10,5 S/m). The ionic conductivity increased with the increase in temperature to above 1 × 10,4 S/m at 90 °C. The film samples became swollen by immersing in propylene carbonate (PC) or PC solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The samples swollen in PC showed higher ionic conductivity (ca.1 × 10,3 S/m at room temperature), and the samples swollen in LiTFSI/PC showed much higher ionic conductivity (nearly 1 S/m at room temperature). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3113,3118, 2010 [source]


Photoinitiated curing of mono- and bifunctional epoxides by combination of active chain end and activated monomer cationic polymerization methods

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2007
Marco Sangermano
Abstract Photoinitiated cationic polymerization of mono- and bifunctional epoxy monomers, namely cyclohexeneoxide (CHO), 4-epoxycyclohexylmethyl-3,,4,-epoxycyclohexanecarboxylate (EEC), respectively by using sulphonium salts in the presence of hydroxylbutyl vinyl ether (HBVE) was studied. The real-time FTIR spectroscopic, gel content determination, and thermal characterization studies revealed that both hydroxyl and vinyl ether functionalities of HBVE take part in the polymerization. During the polymerization, HBVE has the ability to react via both active chain end (ACE) and activated monomer mechanisms through its hydroxyl and vinyl ether functionalities, respectively. Thus, more efficient curing was observed with the addition of HBVE into EEC-containing formulations. It was also demonstrated that HBVE is effective in facilitating the photoinduced crosslinking of monofunctional epoxy monomer, CHO in the absence of a conventional crosslinker. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4914,4920, 2007 [source]


On Toughness and Stiffness of Poly(butylene terephthalate) with Epoxide-Containing Elastomer by Reactive Extrusion

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 8 2004
Zhong-Zhen Yu
Abstract Summary: To obtain a balance between toughness (as measured by notched impact strength) and elastic stiffness of poly(butylene terephthalate) (PBT), a small amount of tetra-functional epoxy monomer was incorporated into PBT/[ethylene/methyl acrylate/glycidyl methacrylate terpolymer (E-MA-GMA)] blends during the reactive extrusion process. The effectiveness of toughening by E-MA-GMA and the effect of the epoxy monomer were investigated. It was found that E-MA-GMA was finely dispersed in PBT matrix, whose toughness was significantly enhanced, but the stiffness decreased linearly, with increasing E-MA-GMA content. Addition of 0.2 phr epoxy monomer was noted to further improve the dispersion of E-MA-GMA particles by increasing the viscosity of the PBT matrix. While use of epoxy monomer had little influence on the notched impact strength of the blends, there was a distinct increase in the elastic stiffness. SEM micrographs of impact-fracture surfaces indicated that extensive matrix shear yielding was the main impact energy dissipation mechanism in both types of blends, with or without epoxy monomer, and containing 20 wt.-% or more elastomer. SEM micrographs of freeze-fractured surfaces of PBT/E-MA-GMA blend illustrating the finer dispersion of E-MA-GMA in the presence of epoxy monomer. [source]


DGEBA monomer as a solvent for syndiotactic polystyrene

MACROMOLECULAR SYMPOSIA, Issue 1 2003
Jaap Schut
Abstract Syndiotactic polystyrene (sPS) has to be processed at high temperatures (i.e. >290°C due to its melting point of 270°C), which approaches its degradation temperature. We aim to facilitate the processing of sPS by lowering its melt temperature and viscosity with a curable epoxy/amine model system as reactive solvent, which will result in a thermoplastic-thermoset polymer blend. As a first step we therefore investigated the melting behaviour of sPS in epoxy monomer, established its phase diagram, and investigated the crystalline form of sPS in these mixtures. DGEBA epoxy monomer is found to be a solvent for syndiotactic polystyrene at temperatures above 220°C. The DGEBA-sPS phase diagram was established by means of DSC, on the basis of crystallization and melting peaks. The form of the curve in the phase diagram indicates that DGEBA is a poor solvent for sPS. In WAXS studies of blends only the , crystalline form was detected, not the , form, thus no sPS-DGEBA polymer-solvent compounds (clathrates) were detected. However, DGEBA can still serve as a monomer for improved processing as it depresses the crystallization temperature by 20 to 60 K upon addition of 20 to 90 wt% DGEBA respectively, while a 16 to 45 K melting peak depression can be observed by adding 20 to 90 wt% DGEBA. [source]


Epoxy nanocomposites curing by microwaves

POLYMER ENGINEERING & SCIENCE, Issue 8 2006
Nurseli Uyan
In this work, chemically modified sodium montmorillonite and epoxy monomer were used to prepare nanocomposites in two consecutive stages. In the first stage, dodecylamine, octadecylamine, hexadecylamine, and hexadecyltrimethyl ammonium bromide were used to prepare various organophilic clays. In the second stage, the bisphenol-A based epoxy monomer and predetermined amounts of organoclay were mixed together and then cured by an aliphatic polyamine for 20 min under microwave at 400 W. Furthermore, ,-, diacrylate poly(dimethylsiloxane) was added to the mixture before the curing process to modify the toughness of the samples. The mixture was poured into the poly(tetrafluoroethylene) mold; the epoxy resin/curing agent ratio was maintained as 2/1. The clear films formed after microwave irradiation were removed from the mold, cooled, and then stored in a cool and dry medium until characterization. The samples were analyzed by wide angle X-ray diffraction, differential scanning calorimetry, and mechanical tests. Surfaces of the cold fractured samples were also observed under the scanning electron microscope. The results revealed that microwave curing of the samples of 5% organoclay and 5% siloxane showed improvement in mechanical properties. POLYM. ENG. SCI. 46:1104,1110, 2006. © 2006 Society of Plastics Engineers [source]


Photoinitiated curing of mono- and bifunctional epoxides by combination of active chain end and activated monomer cationic polymerization methods

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2007
Marco Sangermano
Abstract Photoinitiated cationic polymerization of mono- and bifunctional epoxy monomers, namely cyclohexeneoxide (CHO), 4-epoxycyclohexylmethyl-3,,4,-epoxycyclohexanecarboxylate (EEC), respectively by using sulphonium salts in the presence of hydroxylbutyl vinyl ether (HBVE) was studied. The real-time FTIR spectroscopic, gel content determination, and thermal characterization studies revealed that both hydroxyl and vinyl ether functionalities of HBVE take part in the polymerization. During the polymerization, HBVE has the ability to react via both active chain end (ACE) and activated monomer mechanisms through its hydroxyl and vinyl ether functionalities, respectively. Thus, more efficient curing was observed with the addition of HBVE into EEC-containing formulations. It was also demonstrated that HBVE is effective in facilitating the photoinduced crosslinking of monofunctional epoxy monomer, CHO in the absence of a conventional crosslinker. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4914,4920, 2007 [source]


Synthesis of epoxy monomers that undergo synergistic photopolymerization by a radical-induced cationic mechanism

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 20 2001
James V. Crivello
Abstract A series of novel, cycloaliphatic, cationically photopolymerizable epoxide monomers bearing benzyl ether groups were prepared. These monomers display a considerable enhancement in the rate of their cationic ring-opening polymerizations in comparison with monomers that do not contain such groups. In this article, a synergistic free-radical mechanism is proposed that accounts for this effect, and supporting evidence is offered for its verification. During UV irradiation of an onium salt cationic photoinitiator, the aryl radicals that are generated abstract labile benzyl hydrogens present in such monomers to generate the corresponding carbon-centered radicals. Subsequently, these radicals are oxidized to benzyl carbocations by the onium salt via a nonphotochemical chain process. The observed increase in the rate and extent of the cationic ring-opening polymerization of the epoxide monomers is due to the aforementioned mechanism, which effectively increases the number of reactive cationic species present during polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3578,3592, 2001 [source]


Effect of Nanoplatelets on the Rheological Behavior of Epoxy Monomers

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 2 2009
Luyi Sun
Abstract The effect of nanoplatelets on the rheological behavior of epoxy monomers with variations in nanoplatelet exfoliation level and aspect ratio was investigated. The results show that the presence of exfoliated nanoplatelets in epoxy can significantly influence viscosity and lead to shear-thinning phenomena, especially when the aspect ratio of the nanoplatelets is high. By employing the Krieger-Dougherty model, the effectiveness of nanoplatelets in altering epoxy rheological behavior was quantitatively described and compared with experimental findings. Possible physical reasons for the observed rheological behaviors are discussed. The implication of the present study for polymer nanocomposites processing is also addressed. [source]


Kinetic Study and New Applications of UV Radiation Curing

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 18 2002
Christian Decker
Abstract Highly crosslinked polymers can be readily synthesized by photoinitiated polymerization of multifunctional monomers or functionalized polymers. The reaction can be followed in situ by real-time infrared (RT-IR) spectroscopy, a technique that records conversion versus time curves in photosensitive resins undergoing ultrafast polymerization upon UV exposure. For acrylate-based resins, UV-curing proceeds with long kinetic chains (7700 mol/radical) in spite of the high initiation rate. RT-IR spectroscopy proved very valuable in assessing the influence of various parameters, such as initiation efficiency, chemical structure of the telechelic oligomer, light intensity, inhibitory effect of oxygen, on polymerization kinetics. Interpenetrating polymer networks can be rapidly synthesized by means of UV irradiation of a mixture of difunctional acrylate and epoxy monomers in the presence of both radical and cationic-type photoinitiators. The same UV technology can be applied to crosslink solid polymers at ambient temperature, which bear different types of reactive groups (acrylate and vinyl double bonds, epoxy ring). UV radiation curing has been successfully used to produce within seconds weathering resistant protective coatings, high-resolution relief images, glass laminates and nanocomposites materials. Photoinitiated crosslinking polymerization. [source]


Thermomechanical and morphological properties of epoxy resins modified with functionalized hyperbranched polyester

POLYMER ENGINEERING & SCIENCE, Issue 11 2006
I. Blanco
Thermomechanical and morphological properties of blends of epoxy monomers and hydroxyl and epoxy functionalized hyperbranched polyesters have been studied. Different properties of the blends were found by changing the cure cycles (a precure step followed by a postcure at higher temperature). All the blends showed phase separation with a particulate morphology. Through the addition of the hydroxyl-ended modifiers, rather than the epoxy-ended, an increase of the viscosity and of the reactivity of the uncured blends was obtained. The blends containing the epoxy functionalized polymer showed some liquid,liquid transitions in the rheological traces, probably because of the phase separation phenomena. POLYM. ENG. SCI., 46:1502,1511, 2006. © 2006 Society of Plastics Engineers [source]


Thermal decomposition, combustion and flame-retardancy of epoxy resins,a review of the recent literature

POLYMER INTERNATIONAL, Issue 12 2004
Sergei V Levchik
Abstract An overview of the recent literature on combustion and flame-retardancy of epoxy resins is presented. A brief overview of the structures of cured epoxy resins is also presented as a background for better understanding of the thermal decomposition and combustion phenomena. The literature sources were mostly taken from the publications of 1995 and later; however, for basic descriptions of the structural and thermal decomposition principles, older publications are also cited. New developments in flame-retardant additives, epoxy monomers and curing agents are described. It is shown that the main attention in recent years has been focused on phosphorus-containing epoxy monomers and epoxy resins. Silicon-containing or nitrogen-containing products and inorganic additives remain of great interest as supplementary materials to phosphorus flame-retardants. Copyright © 2004 Society of Chemical Industry [source]