Home About us Contact | |||
Epithelial-mesenchymal Transition (epithelial-mesenchymal + transition)
Selected AbstractsThe role of twist during palate development,DEVELOPMENTAL DYNAMICS, Issue 10 2008Wenli Yu Abstract In palatogenesis, the MEE (Medial Edge Epithelium) cells disappear when palates fuse. We hypothesize that the MEE cells undergo EMT (Epithelial-Mesenchymal Transition) to achieve mesenchyme confluence. Twist has an important role in EMT for tumor metastasis. The purpose of this study was to analyze Twist function during palatal fusion. Twist protein was expressed in palatal shelves and MEE both in vivo and in vitro just prior to fusion. Twist mRNA increased in chicken palates 3 and 6 hr after TGF,3 treatment. Palatal fusion was decreased when cultured palatal shelves were treated with 200 nM Twist siRNA and the subcellular localization of ,-catenin was altered. Twist mRNA decreased in palatal shelves treated with TGF,3 neutralizing antibody or LY294002, a specific phosphatidylinositol-3 kinase (PI-3K) inhibitor. In summary, Twist is downstream of TGF,3 and PI-3K pathways during palatal fusion. However, decreasing Twist with siRNA did not completely block palate fusion, indicating that the function of Twist may be duplicated by other transcription factors. Developmental Dynamics 237:2716,2725, 2008. © 2008 Wiley-Liss, Inc. [source] Inflammatory cytokines augments TGF-,1-induced epithelial-mesenchymal transition in A549 cells by up-regulating T,R-ICYTOSKELETON, Issue 12 2008Xiangde Liu Abstract Epithelial-mesenchymal transition (EMT) is believed to play an important role in fibrosis and tumor invasion. EMT can be induced in vitro cell culture by various stimuli including growth factors and matrix metalloproteinases. In this study, we report that cytomix (a mixture of IL-1,, TNF-, and IFN-,) significantly enhances TGF-,1-induced EMT in A549 cells as evidenced by acquisition of fibroblast-like cell shape, loss of E-cadherin, and reorganization of F-actin. IL-1, or TNF-, alone can also augment TGF-,1-induced EMT. However, a combination of IL-1, and TNF-, or the cytomix is more potent to induce EMT. Cytomix, but not individual cytokine of IL-1,, TNF-, or IFN-,, significantly up-regulates expression of TGF-, receptor type I (T,R-I). Suppression of T,R-I, Smad2 or Smad3 by siRNA partially blocks EMT induction by cytomix plus TGF-,1, indicating cytomix augments TGF-,1-induced EMT through enhancing T,R-I and Smad signaling. These results indicate that inflammatory cytokines together with TGF-,1 may play an important role in the development of fibrosis and tumor progress via the mechanism of epithelial-mesenchymal transition. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source] Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell linesINTERNATIONAL JOURNAL OF CANCER, Issue 1 2009Piyali Dasgupta Abstract Cigarette smoking is strongly correlated with the onset of nonsmall cell lung cancer (NSCLC). Nicotine, an active component of cigarettes, has been found to induce proliferation of lung cancer cell lines. In addition, nicotine can induce angiogenesis and confer resistance to apoptosis. All these events are mediated through the nicotinic acetylcholine receptors (nAChRs) on lung cancer cells. In this study, we demonstrate that nicotine can promote anchorage-independent growth in NSCLCs. In addition, nicotine also induces morphological changes characteristic of a migratory, invasive phenotype in NSCLCs on collagen gel. These morphological changes were similar to those induced by the promigratory growth factor VEGF. The proinvasive effects of nicotine were mediated by ,7-nAChRs on NSCLCs. RT-PCR analysis showed that the ,7-nAChRs were also expressed on human breast cancer and pancreatic cancer cell lines. Nicotine was found to promote proliferation and invasion in human breast cancer. The proinvasive effects of nicotine were mediated via a nAChR, Src and calcium-dependent signaling pathway in breast cancer cells. In a similar fashion, nicotine could also induce proliferation and invasion of Aspc1 pancreatic cancer cells. Most importantly, nicotine could induce changes in gene expression consistent with epithelial to mesenchymal transition (EMT), characterized by reduction of epithelial markers like E-cadherin expression, ZO-1 staining and concomitant increase in levels of mesenchymal proteins like vimentin and fibronectin in human breast and lung cancer cells. Therefore, it is probable that the ability of nicotine to induce invasion and EMT may contribute to the progression of breast and lung cancers. © 2008 Wiley-Liss, Inc. [source] Embryonic transcription factors in human breast cancerIUBMB LIFE, Issue 3 2006Karoline J. Briegel Abstract Growing evidence suggests that breast cancer cells often reactivate latent developmental programs in order to efficiently execute the multi-step process of tumorigenesis. This review focuses on key transcriptional regulators of embryonic development that are deregulated in breast cancer and discusses the molecular mechanisms by which these proteins control carcinogenesis. Reminiscent of their function during development, embryonic transcription factors regulate changes in gene expression that promote tumor cell growth, cell survival and motility, as well as a morphogenetic process called epithelial-mesenchymal transition (EMT), which is implicated in both breast metastasis and tumor recurrence. Because of their pivotal roles in breast tumor progression, these factors represent valuable new biomarkers for breast cancer detection as well as promising new targets for anti-invasive drugs. IUBMB Life, 58: 123-132, 2006 [source] Review Article: Review: Endothelial-myofibroblast transition, a new player in diabetic renal fibrosisNEPHROLOGY, Issue 5 2010JINHUA LI ABSTRACT Diabetic nephropathy (DN) is the most common cause of chronic kidney failure and end-stage renal disease in the Western world. Studies from diabetic animal models and clinical trials have shown that inhibition of the renin-angiotensin system delays the progression of advanced DN. However, a recent large-scale clinical trial has revealed that inhibition of renin-angiotensin system in early phases of DN does not slow the decline of renal function or the development of morphological lesions, suggesting that different mechanism(s) may be involved in the different stages of DN. The role of epithelial-mesenchymal transition in renal fibrosis has been intensively investigated. Recently, endothelial-mesenchymal transition, or endothelial-myofibroblast transition (EndoMT) has emerged as another mechanism involved in both developmental and pathological processes. The essential role of EndoMT in cardiac development has been thoroughly studied. EndoMT also exists and contributes to the development and progression of cardiac fibrosis, lung fibrosis, liver fibrosis and corneal fibrosis. EndoMT is a specific form of epithelial-mesenchymal transition. During EndoMT, endothelial cells lose endothelial markers and obtain mesenchymal markers. Recent evidence from our laboratory and others suggests that EndoMT plays an important role in the development of renal fibrosis in several pathological settings, including experimental DN. This review considers the evidence supporting the occurrence of EndoMT in normal development and in pathology, as well as the latest findings suggesting EndoMT contributes to fibrosis in DN. Whether experimental findings of EndoMT will be reproduced in human studies remains to be determined. [source] A proteomic approach to immune-mediated epithelial-mesenchymal transitionPROTEOMICS - CLINICAL APPLICATIONS, Issue 7-8 2008Ronan Feighery Dr. Abstract Increasing evidence suggests epithelial-mesenchymal transition (EMT) plays an important role in renal fibrosis. Initial renal injury enables the infiltration of mononuclear cells into the interstitium, and the resulting generation of inflammatory mediators that favour EMT may have a direct role in the development of renal fibrosis. The aim of this study was to investigate the proteome of renal tubular epithelial cells undergoing EMT in vitro. The human proximal tubular cell line (HK-2), exposed to conditioned medium from activated peripheral blood mononuclear cells (PBMC-CM), undergo phenotypic change, from an epithelial towards a fibroblastic phenotype, as evidenced by decreased E-cadherin and increased fibronectin protein expression. Further proteomic analysis, using 2-DE and Progenesis software, revealed the down-regulation of 4 proteins and up-regulation of 23 proteins. MS analysis allowed the positive identification of 15 differentially expressed proteins, including annexin A2, adipocyte plasma membrane-associated protein, T-complex protein 1, reticulocalbin-1 precursor and moesin among others. Western blotting and quantitative real-time PCR confirmed the increase in annexin A2 at the protein and gene level, respectively. Since annexin A2 and S100A6 exist as complexes in B-1 cells, we investigated the S100A6 gene expression further and show an increased expression in HK-2 cells following exposure to activated PBMC-CM. Therefore, we have identified several potential proteins that could play key roles in immune-mediated EMT. [source] Pathogenesis of osteoblastic bone metastases from prostate cancer,CANCER, Issue 6 2010Toni Ibrahim MD Abstract Prostate cancer is the second leading cause of cancer-related death in men. A typical feature of this disease is its ability to metastasize to bone. It is mainly osteosclerotic, and is caused by a relative excess of osteoblast activity, leading to an abnormal bone formation. Bone metastases are the result of a complex series of steps that are not yet fully understood and depend on dynamic crosstalk between metastatic cancer cells, cellular components of the bone marrow microenvironment, and bone matrix (osteoblasts and osteoclasts). Prostate cancer cells from primary tissue undergo an epithelial-mesenchymal transition to disseminate and acquire a bone-like phenotype to metastasize in bone tissue. This review discusses the biological processes and the molecules involved in the progression of bone metastases. Here we focus on the routes of osteoblast differentiation and activation, the crosstalk between bone cells and tumor cells, and the molecules involved in these processes that are expressed by both osteoblasts and tumor cells. Furthermore, this review deals with the recently elucidated role of osteoclasts in prostate cancer bone metastases. Certainly, to better understand the underlying mechanisms of bone metastasis and so improve targeted bone therapies, further studies are warranted to shed light on the probable role of the premetastatic niche and the involvement of cancer stem cells. Cancer 2010. © 2010 American Cancer Society. [source] Mammary serine protease inhibitor inhibits epithelial growth factor-induced epithelial-mesenchymal transition of esophageal carcinoma cellsCANCER, Issue 1 2009Zhen Cai PhD Abstract BACKGROUND: By using proteomic technology, the authors previously observed the substantial down-regulation of mammary serine protease inhibitor (maspin) in esophageal squamous cell carcinoma and metastases. In the current study, they examined the effects of maspin re-expression in a maspin-null esophageal cancer cell line EC109 and also investigated the underlying mechanism. METHODS: A cell line with stable maspin expression was established. An epithelial growth factor (EGF)-induced epithelial-mesenchymal transition (EMT) model was used to mimic some aspects of the metastatic process in vitro. The effects of maspin reintroduction on EGF-induced EMT and cell growth characteristics were evaluated. Comparative proteomic analysis of transfected cells versus parental cells was then performed to explore the potential mechanism. RESULTS: The introduction of maspin into EC109 cells was able to inhibit EGF-induced EMT and altered cell growth characteristics, including the serum dependence, proliferative response to EGF stimulation, and colony formation ability in soft agar, indicating a conversion from a malignant phenotype to a benign phenotype. Proteomic analysis revealed a significant down-regulation of a group of glycolytic enzymes in maspin-transfected cells. In addition, maspin-transfected cells expressed much lower levels of hypoxia-inducible factor 1, than parental cells or empty vector transfected cells. CONCLUSIONS: Maspin exhibited a metastasis-suppressive effect, which may be a consequence of the reversal of the malignant phenotype of EC109 cells. The switch of cellular metabolic phenotype to low glycolysis by the gain of maspin function may play a key role in the process. This finding provides additional evidence of the tumor metastasis-suppressive activity of maspin and may indicate a new direction for future studies of the mechanism of maspin. Cancer 2009. © 2008 American Cancer Society. [source] Induction of epithelial-mesenchymal transition-related genes by benzo[a]pyrene in lung cancer cellsCANCER, Issue 2 2007Ichiro Yoshino MD Abstract BACKGROUND. It is believed that epithelial-mesenchymal transition (EMT) occurs during the development and progression of cancer; however, the correlation between tobacco smoking and EMT remains to be elucidated. METHODS. Cells from the bronchioloalveolar carcinoma cell line A549 were exposed to benzo(a)pyrene (B[a]P) for 24 weeks, and morphology, proliferative activity, and gene expression profiles were analyzed. RESULTS. Although no apparent morphologic changes were observed, the B[a]P-exposed A549 cells exhibited enhanced proliferative activity in 1% bovine serum that contained medium, and dramatic changes in expression levels were observed in a large number of genes. Of those, the expression of EMT-related genes, such as migration-stimulating factor, plasminogen activator inhibitor-1, fibronectin, twist, transforming growth factor-,2, basic fibroblast growth factor, and electron transport system, were up-regulated; whereas gene expression of E-cadherin was decreased. Most enhanced expression levels remained 8 weeks after the retrieval of B[a]P in culture. CONCLUSIONS. The current results indicated that B[a]P seems to induce EMT in lung cancer cells, and it also may drive disease progression in patients with lung cancer. Cancer 2007. © 2007 American Cancer Society. [source] |