Home About us Contact | |||
Epithelial Tumor Cells (epithelial + tumor_cell)
Selected AbstractsLoss of intercellular adhesion activates a transition from low- to high-grade human squamous cell carcinomaINTERNATIONAL JOURNAL OF CANCER, Issue 4 2006Alexander Margulis Abstract The relationship between loss of intercellular adhesion and the biologic properties of human squamous cell carcinoma is not well understood. We investigated how abrogation of E-cadherin-mediated adhesion influenced the behavior and phenotype of squamous cell carcinoma in 3D human tissues. Cell-cell adhesion was disrupted in early-stage epithelial tumor cells (HaCaT-II-4) through expression of a dominant-negative form of E-cadherin (H-2Kd -Ecad). Three-dimensional human tissue constructs harboring either H-2Kd -Ecad-expressing or control II-4 cells (pBabe, H-2Kd -Ecad,C25) were cultured at an air-liquid interface for 8 days and transplanted to nude mice; tumor phenotype was analyzed 2 days and 2 and 4 weeks later. H-2Kd -Ecad-expressing tumors demonstrated a switch to a high-grade aggressive tumor phenotype characterized by poorly differentiated tumor cells that infiltrated throughout the stroma. This high-grade carcinoma revealed elevated cell proliferation in a random pattern, loss of keratin 1 and diffuse deposition of laminin 5 ,2 chain. When II-4 cell variants were seeded into type I collagen gels as an in vitro assay for cell migration, we found that only E-cadherin-deficient cells detached, migrated as single cells and expressed N-cadherin. Function-blocking studies demonstrated that this migration was matrix metalloproteinase-dependent, as GM-6001 and TIMP-2, but not TIMP-1, could block migration. Gene expression profiles revealed that E-cadherin-deficient II-4 cells demonstrated increased expression of proteases and cell-cell and cell-matrix proteins. These findings showed that loss of E-cadherin-mediated adhesion plays a causal role in the transition from low- to high-grade squamous cell carcinomas and that the absence of E-cadherin is an important prognostic marker in the progression of this disease. © 2005 Wiley-Liss, Inc. [source] Detection of bone marrow-disseminated breast cancer cells using an RT-PCR assay of MUC5B mRNAINTERNATIONAL JOURNAL OF CANCER, Issue 4 2003Nora Berois Abstract The evaluation of disseminated epithelial tumor cells in breast cancer patients has generated considerable interest due to its potential association with disease recurrence. Our work was performed to analyze the usefulness of 5 mucin genes expression (MUC2, MUC3, MUC5B, MUC6 and MUC7), using RT-PCR assays, to detect disseminated cancer cells in patients with operable breast cancer. The highest frequencies of positive RT-PCR tests in breast tumor extracts were observed for MUC5B (7/15) and MUC7 (5/12). The best specificity, negative results on all peripheral blood mononuclear (PBMN) cell samples from healthy donors, were shown for MUC2, MUC5B and MUC6 RT-PCR assays. Thus, we selected MUC5B as a target gene for further evaluation. Using a nested RT-PCR, MUC5B mRNA transcripts were detected in 16/31 primary breast tumors (but not in 36 samples of normal PBMN cells) and in the human MCF-7 breast cancer cell line but not in BT20, MDA, T47D and ZR-75 breast cancer cell lines, indicating that MUC5B mRNA is expressed in a population of breast cancer cells. Using this method, 9/46 patients (19.5%) who underwent curative surgery showed positive MUC5B mRNA in bone marrow aspirates obtained prior to surgery, including 5/24 patients (20.8%) with stage I or II breast cancer, without histopathologic lymph node involvement. These results indicate that MUC5B mRNA could be a specific marker applicable to the molecular diagnosis of breast cancer cell dissemination. A comparative evaluation between MUC5B mRNA, cytokeratin 19 (CK19) mRNA and carcinoembryonic antigen (CEA) mRNA in all bone marrow aspirates suggests a putative complementation for molecular detection of disseminated carcinoma cells. Considering that breast cancer is characterized by a great phenotypic heterogeneity, the use of multimarker approach could contribute to tumor cell detection in bone marrow and blood. © 2002 Wiley-Liss, Inc. [source] Expression of heregulin by mouse mammary tumor cells: Role in activation of ErbB receptors,MOLECULAR CARCINOGENESIS, Issue 7 2006M. Schmitt Abstract The inappropriate activation of one or more members of the ErbB family of receptor tyrosine kinases [ErbB-1 (EGFR), ErbB-2, ErbB-3, ErbB-4] has been linked with oncogenesis. ErbB-2 is frequently coexpressed with ErbB-3 in breast cancer cells and in the presence of the ligand heregulin (HRG) the ErbB-2/ErbB-3 receptors form a signaling heterodimer that can affect cell proliferation and apoptosis. The major goal of the present study was to determine whether endogenous HRG causes autocrine/paracrine activation of ErbB-2/ErbB-3 and contributes to the proliferation of mammary epithelial tumor cells. Tyrosine-phosphorylated (activated) ErbB-2 and ErbB-3 receptors were detected in the majority of extracts from tumors that had formed spontaneously or as a result of oncogene expression. HRG-1 transcripts and protein were found in the epithelial cells of most of these mouse mammary tumors. Various mouse mammary cell lines also contained activated ErbB-2/ErbB-3 and HRG transcripts. A ,50 kDa C-terminal fragment of pro-HRG was detected, which indicates that the HRG-1 precursor is readily processed by these cells. It is likely that the secreted mature HRG activated the ErbB-2/3 receptors. Addition of an antiserum against HRG to the mammary epithelial tumor cell line TM-6 reduced ErbB-3 Tyr-phosphorylation. Treatment with HRG-1 siRNA oligonucleotides or infection with a retroviral construct to stably express HRG siRNA effectively reduced HRG protein levels, ErbB-2/ErbB-3 activation, and the rate of proliferation, which could be reversed by the addition of HRG. The cumulative findings from these experiments show that coexpression of the HRG ligand contributes to activation of ErbB-2/Erb-3 in mouse mammary tumor cells in an autocrine or paracrine fashion. Published 2006 Wiley-Liss, Inc. [source] Human-in-mouse modeling of primary head and neck squamous cell carcinoma,THE LARYNGOSCOPE, Issue 12 2009Jonathan H. Law MD Abstract Objectives/Hypothesis: To develop a reliable modeling system for head and neck squamous cell carcinoma (HNSCC). Study Design: Laboratory-based translational study. Methods: HNSCC tissue was obtained from patients at biopsy/resection, cultured, and implanted into mice. In vivo, tumor growth, and survival was monitored by bioluminescence imaging. Histology and immunohistochemistry (IHC) were used to confirm HNSCC and human origin. Results: Short-term culture techniques were optimized allowing survival of primary HNSCC cells more than 7 days in 76% of tumors. The size of the tumor biopsy collected did not correlate with the success of short-term culture or xenograft establishment. Xenograft modeling was attempted in primary HNSCCs from 12 patients with a success rate of 92%. Immunostaining confirmed human origin of epithelial tumor cells within the modeled tumor. Bioluminescence and Ki67 IHC suggested tumor proliferation within the model. Luciferase expression was maintained for as long as 100 days in modeled tumors. Conclusions: The techniques developed for short-term primary tumor culture followed by xenograft modeling provide a low-cost and tractable model for evaluation of HNSCC response to standard and novel therapies. The high success rate of human-in-mouse tumor formation from primary HNSCC suggests that selection pressures for tumor growth in this model may be less than those observed for establishment of cell lines. Bioluminescent imaging provides a useful tool for evaluating tumor growth and could be expanded to measure response of the modeled tumor to therapy. This model could be adapted for xenograft modeled growth of other primary tumor types. Laryngoscope, 2009 [source] Norcantharidin induces HT-29 colon cancer cell apoptosis through the ,v,6,extracellular signal-related kinase signaling pathwayCANCER SCIENCE, Issue 12 2009Cheng Peng Norcantharidin has been used as an efficacious anticancer drug in China for many years, but its true mechanism remains poorly understood. Intriguingly, in an in vitro series study of anticancer drugs, we found that norcantharidin can effectively inhibit epithelial tumor cells from expressing integrin ,v,6. Our previous studies have confirmed that integrin ,v,6 is closely relevant to malignant epithelial cell tumor biology behavior, and it can promote cancer cells to invade and metastasize through a special ,v,6,extracellular signal-related kinase (ERK) direct signaling pathway. In this study, we investigated the relationship between the norcantharidin anticancer mechanism and integrin ,v,6. After HT-29 colon cancer cells were treated with norcantharidin, cell apoptosis increased remarkably. The expression of ,v,6 and the amount of p-ERK decreased substantially; simultaneously, the linkage between ,v,6 and ERK was barely detectable. However, the expression of other integrins and the levels of mitogen-activated protein kinase hardly changed. On these grounds, we presumed that norcantharidin induced HT-29 colon cancer cell apoptosis through the ,v,6,ERK signaling pathway. This finding elicited a novel strategy for targeting the whole ,v,6,ERK signal pathway, rather than simply blocking the combining site of ,v,6,ERK in colon cancer treatment. (Cancer Sci 2009; 100: 2302,2308) [source] |