Home About us Contact | |||
Epithelial Function (epithelial + function)
Selected AbstractsProtection of the Peyer's patch-associated crypt and villus epithelium against methotrexate-induced damage is based on its distinct regulation of proliferationTHE JOURNAL OF PATHOLOGY, Issue 1 2002Ingrid B. Renes Abstract The crypt and villus epithelium associated with Peyer's patches (PPs) is largely spared from methotrexate (MTX)-induced damage, compared with the non-patch (NP) epithelium. To assess the mechanism(s) preventing damage to the PP epithelium after MTX treatment, epithelial proliferation, apoptosis, and cell functions were studied in a rat-MTX model. Small intestinal segments containing PPs were excised after MTX treatment. Epithelial proliferation and apoptosis were assessed by detection of incorporated BrdU and cleaved caspase-3, respectively. Epithelial functions were determined by the expression of cell type-specific gene products at mRNA and protein level. Before and after MTX treatment, the number of BrdU-positive cells was higher in PP crypts than in NP crypts. BrdU incorporation was diminished in NP crypts, while in PP crypts incorporation was hardly affected. In PP and NP crypts, similar and increased levels of cleaved caspase-3-positive cells were observed after MTX. The enterocyte markers, sucrase-isomaltase, sodium-glucose co-transporter 1, glucose transporters 2 and 5, and intestinal and liver fatty acid binding protein, were down-regulated after MTX in NP epithelium but not in PP epithelium. In contrast, expression of the goblet cell markers, Muc2 and trefoil factor 3, and the Paneth cell marker, lysozyme, was maintained after MTX in both PP and NP epithelium. In conclusion, as MTX-induced apoptosis was similar in PP and NP crypts, the protection of the PP epithelium seems to be based on differences in the regulation of epithelial proliferation. Enterocyte function in the PP epithelium was unaffected by MTX treatment. Goblet and Paneth cell function was maintained in both NP and PP epithelium. Copyright © 2002 John Wiley & Sons, Ltd. [source] Facts, fantasies and fun in epithelial physiologyEXPERIMENTAL PHYSIOLOGY, Issue 3 2008C. A. R. Boyd The hallmark of epithelial cells is their functional polarization. It is those membrane proteins that are distributed differentially, either to the apical or to the basal surface, that determine epithelial physiology. Such proteins will include ,pumps', ,channels' and ,carriers', and it is the functional interplay between the actions of these molecules that allows the specific properties of the epithelium to emerge. Epithelial properties will additionally depend on: (a) the extent to which there may be a route between adjacent cells (the ,paracellular' route); and (b) the folding of the epithelium (as, for example, in the loop of Henle). As for other transporters, there is polarized distribution of amino-acid carriers; the molecular basis of these is of considerable current interest with regard to function, including ,inborn errors' (amino-acidurias); some of these transporters have additional functions, such as in the regulation of cell fusion, in modulating cell adherence and in activating intracellular signalling pathways. Collaboration of physiologists with fly geneticists has generated new insights into epithelial function. One example is the finding that certain amino-acid transporters may act as ,transceptors' and play a role as sensors of the extracellular environment that then regulate intracellular pathways controlling cell growth. [source] Tissue plasminogen activator (t-PA) and placental plasminogen activator inhibitor (PAI-2) in gingival crevicular fluid from patients with Papillon,Lefèvre syndromeJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 9 2004Christer Ullbro Abstract Objectives: Numerous patients with Papillon,Lefèvre syndrome (PLS) express a severe periodontal inflammation that results in premature loss of deciduous and permanent teeth. The plasminogen activating (PA) system is involved in physiological and pathological processes including epithelial healing, extracellular proteolysis and local inflammatory reactions. The aim of the study was to explore a possible role of the PA system in patients with PLS. Material and Methods: Samples of gingival crevicular fluid (GCF) were collected from areas with gingival infection in 20 patients with PLS and in 20 healthy controls. The concentration of tissue plasminogen activator (t-PA) and inhibitor (PAI-2) was measured with ELISA. Results: The median level of PAI-2 was significantly higher (p<0.01) in PLS patients than in the controls, while the median value of t-PA did not differ between the groups. No difference in t-PA or PAI-2 levels was found regarding age, gender or presence of active periodontal disease. Conclusion: The findings indicate an atypical activity of the PA system with a disturbed epithelial function in PLS patients, suggesting that the periodontal destruction seen in patients with PLS is secondary to a hereditary defect in the defense system. [source] Protease-activated receptors: novel central role in modulation of gastric functionsNEUROGASTROENTEROLOGY & MOTILITY, Issue 4 2010K. N. Browning Abstract, Protease-activated receptors (PARs) are members of a subfamily of G-protein-coupled receptors that regulate diverse cell functions in response to proteolytic cleavage of an anchored peptide domain that acts as a ,tethered' receptor-activating ligand. PAR-1 and PAR-2 in particular are present throughout the gastrointestinal (GI) tract and play prominent roles in the regulation of GI epithelial function, motility, inflammation and nociception. In a recent article in Neurogastroenterology and Motility, Wang et al. demonstrate, for the first time, that PAR-1 and PAR-2 are present on preganglionic parasympathetic neurons within the rat brainstem. As in other cellular systems, proteases such as thrombin and trypsin activate PAR-1 and PAR-2 on neurons of the dorsal motor nucleus of the vagus (DMV), leading to an increase in intracellular calcium levels via signal transduction mechanisms involving activation of phospholipase C and inositol triphosphate (IP3). The authors also report that the level of PAR-1 and PAR-2 transcripts in DMV tissue is increased following experimental colitis, suggesting that inflammatory conditions may modulate neuronal behavior or induce plasticity within central vagal neurocircuits. It seems reasonable to hypothesize, therefore, that the activity and behavior of vagal efferent motoneurons may be modulated directly by local and/or systemic proteases released during inflammation. This, in turn, may contribute to the increased incidence of functional GI disorders, including gastric dysmotility, delayed emptying and gastritis observed in patients with inflammatory bowel diseases. [source] Long-lasting changes in small intestinal transport following the recovery from Trichinella spiralis infectionNEUROGASTROENTEROLOGY & MOTILITY, Issue 3 2006K. Venkova Abstract, Changes in intestinal motility and visceral sensitivity are found after resolution of acute enteric inflammation. The study investigates whether a transient nematode-induced intestinal inflammation may result in long-lasting remodelling of epithelial transport. Ferrets infected with Trichinella spiralis or sham-infected animals were euthanized on day 10, 30 or 60 postinfection (PI) and the jejunum was isolated. The net transport of electrolytes was measured electrophysiologically as transmucosal short-circuit current (Isc) and responses to electrical field stimulation (EFS: 1,32 Hz) or secretagogues were investigated. Myeloperoxidase (MPO) activity, a marker of mucosal inflammation, was maximal during the enteric stage of T. spiralis infection (day 10 PI) and returned to normal on days 30 and 60 PI. Mucosal inflammation caused a reduction in basal Isc, increased electrical conductance (G) and decreased the maximal responses to EFS, carbachol or histamine. On days 30 and 60 PI the inflammation resolved and basal electrogenic transport appeared normal; however, the secretion induced by EFS, carbachol or histamine remained suppressed. Moreover, EFS-induced responses were shifted from predominantly cholinergic in controls to non-cholinergic in the infected animals. The results suggest that a transient small intestinal inflammation causes a long-term remodelling of epithelial function. [source] Modulation of Na+ transport across isolated rumen epithelium by short-chain fatty acids in hay- and concentrate-fed sheepJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 11-12 2003S. K. Uppal Summary The effect of increasing concentrations of short-chain fatty acids [SCFA; mixture of the Na+ salts of acetic acid (62.5%), propionic acid (25.0%) and of butyric acid (12.5%)] on Na+ transport of sheep rumen epithelium was studied in vitro. The conventional Ussing chamber method was used for measuring Na+ transport rates (22Na+), short-circuit current (Isc) and tissue conductance (GT) of isolated rumen epithelium. SCFA in the buffer solution on the mucosal side caused a linear increase of Jnet Na+ from 1.14, to 1.22, 1.78 and 2.50 ,eq/cm2/h in hay-fed sheep at 0, 15, 40 and 80 mmol/l SCFA, respectively. In a second study, the effect of higher SCFA concentrations [0 (control), 80, 100 and 120 mmol/l] was investigated with epithelia from two groups of sheep. One group was subjected to hay ad libitum, whereas the other received concentrate feed (800 g/day in equal portions at 7.00 am and 3.00 pm) and hay ad libitum. Epithelia from concentrate-fed sheep again showed a significant (p < 0.05) and linear increase in Jnet Na+ at 80, 100 and 120 mmol/l. However, in hay-fed sheep, the difference in increase among 80, 100 and 120 mmol/l SCFA was not significant, indicating that, above 80 mmol/l SCFA Jms and Jnet exhibit saturation. Moreover, Na+ fluxes (Jms and Jnet) were generally higher in concentrate-fed than in hay-fed sheep at all SCFA concentrations and significant differences were observed at 100 and 120 mmol/l SCFA. The obtained results confirm the effect of SCFA on Na+ transport and are in agreement with studies regarding feeding regimes and electrolyte transport in the rumen. The important new observation is the increase of Na+ transport in concentrate-fed sheep even at high concentrations of SCFA (100 and 120 mmol/l). The enhanced activity of the Na+/H+ exchanger at these SCFA concentrations supports the assumption that the capacity for regulating the intracellular pH by extrusion of protons is increased, suggesting an adaptation in concentrate-fed sheep. This adaptation could prevent possible disturbances of epithelial functions (transport and barrier) under conditions of increased SCFA absorption. [source] |