Home About us Contact | |||
Epithelial Elements (epithelial + element)
Selected AbstractsThe epithelial cell rests of Malassez , a role in periodontal regeneration?JOURNAL OF PERIODONTAL RESEARCH, Issue 4 2006J. C. Rincon This article reviews general aspects about the epithelial cell rests of Malassez (ERM). The historical and general morphological features of the ERM are briefly described. The embryological derivation of the ERM is presented as an important consideration in understanding the events associated with their origin and possible functional roles within the periodontal ligament. The ultrastructural description of the ERM is also included to complement the morphological characteristics which distinguish these cells as the unique epithelial element of the periodontal ligament. The unique ability of these cells to synthesize and secrete a number of proteins usually associated with cells of mesenchymal origin, rather than ectodermal origin, is discussed in light of their role in cementum repair and regeneration. Such considerations lead to our hypothesis that one of the functional roles of the ERM may lie not only their role in maintaining and contributing to the normal periodontal cellular elements and function but also contributing, in a significant manner, to periodontal regeneration. [source] Uterine adenosarcoma detected by Papanicolaou smear: A Case report,DIAGNOSTIC CYTOPATHOLOGY, Issue 7 2006F.R.C.P.C., Sylvia Pasternak M.D. Abstract Adenosarcoma is a rare uterine biphasic tumor composed of benign epithelial elements and a sarcomatous stroma. Although it is well described histologically, its cytological features are rarely mentioned in the literature. We describe a case of uterine adenosarcoma that was first detected by Papanicolau (Pap) smear. Numerous crowded clusters of spindle cells were present within a bloody background, as well as a few smaller, dyscohesive groups with cells showing high N:C ratio and oval to round nuclei with coarse chromatin and small nucleoli. A few nuclear grooves were identified. Adenosarcomas are rare lesions but should be considered in the differential diagnosis when spindled cells are noted in a pap smear. Diagn. Cytopathol. 2006;34:495,498. © 2006 Wiley-Liss, Inc. [source] Twist is inversely associated with claudins in germ cell tumors of the testisAPMIS, Issue 9 2010PÄIVI VÄRE Väre P, Soini Y. Twist is inversely associated with claudins in germ cell tumors of the testis. APMIS 2010; 118: 640,7. We investigated the expression of claudins 1, 3,7 and transcriptional factor twist in a set of testicular germ cell tumors. The material consisted of 17 seminomas, 13 teratomas, 9 teratocarcinomas, 20 embryonal carcinomas and 9 mixed germ cell tumors. They were immunostained with antibodies to claudins 1, 3,7 and twist. As expected, all claudins were variably present in germ cell tumors with epithelial elements or differentiation, but the intensity of expression varied depending on the claudin type. Mesenchymal elements in teratomatous tumors remained negative for claudins. Expression of different claudins was less intense and inconsistent in other types of germ cell tumors. Choriocarcinomatous elements in germ cell tumors expressed relatively strongly claudin 4 and weaker positivity for claudins 5,7, while claudins 1 and 3 were negative. Seminomas showed expression only for claudins 5 and 7. The transcriptional factor twist was most strongly expressed in seminoma followed by embryonal carcinoma. Twist expression was inversely associated with several claudins (claudins 1, 3, 4 and 6). Germ cell tumors vary in their expression of claudins 1,7. Twist expression was inversely associated with several claudins, suggesting that it takes part in the downregulation of claudins in testicular tumors. [source] Aberrantly differentiated cells in benign pilomatrixoma reflect the normal hair follicle: immunohistochemical analysis of Ca2+ -binding S100A2, S100A3 and S100A6 proteinsBRITISH JOURNAL OF DERMATOLOGY, Issue 2 2005K. Kizawa Summary Background, Pilomatrixoma is a common benign cutaneous tumour containing differentiated hair matrix cells. This tumour is mainly composed of basophilic, transitional, shadow and squamoid cells. Although some S100 proteins are expressed in a tissue-specific manner in the hair follicle (e.g. S100A2 in the outer root sheath, S100A3 in the cortex and cuticle, and S100A6 in the inner root sheath), little information is available concerning their distribution in the aberrantly differentiated tissues of pilomatrixoma. Objectives, To characterize the disordered epithelial elements of pilomatrixoma by localizing S100A2, S100A3 and S100A6 proteins. Methods, Immunohistochemistry and dual-immunofluorescence microscopy were performed on 22 pilomatrixoma specimens using antibodies specific to the three proteins. Results, Tissue-specific distribution of the S100 proteins investigated was preserved in the morphologically disordered tumour tissues. Anti-S100A2 antibody stained squamoid cells and putative outer root sheath cells; basophilic and potential hair matrix cells were occasionally stained. S100A3 staining was found in transitional cells and putative cortical cells, and was strong in both dispersed cells and hair-like structures surrounding cells which were presumably cuticular cells. Anti-S100A6 antibody labelled some S100A3-negative transitional cell strands, potentially inner root sheath cells. Conclusions, The epithelial elements of pilomatrixoma can be characterized using S100 proteins as biochemical markers. Our results show that pilomatrixomas retain a certain degree of differentiation indicative of distinct hair-forming cells. [source] |