Environmental Temperature (environmental + temperature)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Environmental Temperature

  • high environmental temperature


  • Selected Abstracts


    Kinetic Modeling of the Autotrophic Growth of Pavlova lutheri: Study of the Combined Influence of Light and Temperature

    BIOTECHNOLOGY PROGRESS, Issue 4 2003
    Ana P. Carvalho
    The optimization and control of biochemical processes require the previous establishment of mathematical models that can describe the effect of process variables on their actual kinetics. Environmental temperature is a modulating factor to which the algal cells respond continuously by adjusting their rates of cellular reactions, their nutritional requirements, and, consequently, their biomass composition. Light intensity is an exhaustible resource, indispensable to autotrophic organisms. The effects of light intensity and temperature on growth of the microalga Pavlova lutheri, which have hardly been considered to date in a simultaneous fashion, were experimentally assessed using a factorial experimental design; in this way, the effects of each variable independently and their interactions could be quantified, using maximum biomass (Xmax) or maximum specific growth rate (,max) as objective functions. The preliminary results produced indicated that light intensity plays a more important role on ,max than temperature; in the case of Xmax, both temperature and, to a lesser extent, light intensity do apparently play a role. The highest values of Xmax were associated with low temperatures and high light intensities; a similar behavior could be observed for ,max concerning light intensity, although the dependency on temperature did not seem to be as important. A more complex mechanistic model was then postulated, incorporating light and temperature as input variables, which was successfully fitted to the experimental data generated during batch cultivation of P. lutheri. [source]


    Epigenetic control of translation regulation: Alterations in histone H3 lysine 9 post-translation modifications are correlated with the expression of the translation initiation factor 2B (Eif2b5) during thermal control establishment

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2010
    Tatiana Kisliouk
    Abstract Thermal control set point is regulated by thermosensitive neurons of the preoptic anterior hypothalamus (PO/AH) and completes its development during postnatal critical sensory period. External stimuli, like increase in environmental temperature, influence the neuronal protein repertoire and, ultimately, cell properties via activation or silencing of gene transcription, both of which are regulated by the "histone code."" Here, we demonstrated an increase in global histone H3 lysine 9 (H3K9) acetylation as well as H3K9 dimethylation in chick PO/AH during heat conditioning at the critical period of sensory development. In contrast to the global profile of H3K9 modifications, acetylation and dimethylation patterns of H3K9 at the promoter of the catalytic subunit of eukaryotic translation initiation factor 2B (Eif2b5) were opposite to each other. During heat conditioning, there was an increase in H3K9 acetylation at the Eif2b5 promoter, simultaneously with decrease in H3K9 dimethylation. These alterations coincided with Eif2b5 mRNA induction. Moreover, exposure to excessive heat during the critical period resulted in long-term effect on both H3K9 tagging at the Eif2b5 promoter and Eif2b5 mRNA expression. These data suggest a role for dynamic H3K9 post-translational modifications in global translation regulation during the thermal control establishment. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010 [source]


    Is natural selection a plausible explanation for the distribution of Idh- 1 alleles in the cricket Allonemobius socius?

    ECOLOGICAL ENTOMOLOGY, Issue 1 2006
    Diana L. Huestis
    Abstract., 1.,Allozyme alleles in natural populations have been proposed as either neutral markers of genetic diversity or the product of natural selection on enzyme function, as amino acid substitutions that change electrophoretic mobility may also alter enzyme performance. To address these possibilities, researchers have used both correlative analyses and empirical studies. 2.,Here, geographically structured variation of the enzyme isocitrate dehydrogenase (Idh- 1) in the striped ground cricket Allonemobius socius Scudder (Orthoptera: Gryllidae) is examined. The distributions of Idh- 1 alleles appear to be related to environmental gradients, as allele frequencies showed significant relationships with mean annual temperature and precipitation. Specifically, the slowest mobility allele was more frequent at colder temperatures, while the converse occurred for the fastest mobility allele. 3.,An exploratory experiment was performed to examine fitness effects of possessing different Idh- 1 alleles at two temperatures to test the hypothesis that the geographic structure of this locus may reflect environmental adaptation. Results showed that a significant interaction between temperature and Idh- 1 genotype affected the number of eggs laid, with success of homozygous individuals matching environmental expectations. 4.,The above results show that (1) variation in the frequency of Idh- 1 alleles is significantly related to environmental gradients in the eastern U.S.A. and (2) alternative alleles of Idh- 1 appear to influence the egg-laying ability of individuals differently depending on environmental temperature. Together, these results suggest that natural selection is a plausible mechanism underlying the distribution of Idh- 1 alleles in this species, although more detailed studies are needed. [source]


    Temperature checks the Red Queen?

    ECOLOGY LETTERS, Issue 1 2003
    Resistance, virulence in a fluctuating environment
    Abstract Numerous studies have revealed genetic variation in resistance and susceptibility in host,parasite interactions and therefore the potential for frequency-dependent selection (Red Queen dynamics). Few studies, if any, have considered the abiotic environment as a mediating factor in these interactions. Using the pea aphid, Acyrthosiphon pisum, and its fungal pathogen, Erynia neoaphidis, as a model host,parasite system, we demonstrate how temperature can mediate the expression of genotypic variation for susceptibility and virulence. Whilst previous studies have revealed among-clone variation in aphid resistance to this pathogen, we show that resistance rankings derived from assessments at one temperature, are not conserved across differing temperature regimes. We suggest that variation in environmental temperature, through its nonlinear impact on parasite virulence and host defence, may contribute to the general lack of evidence for frequency-dependent selection in field systems. [source]


    Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2002
    Sabino Del Vento
    Abstract Phytoplankton and bacteria play an important role on the biogeochemical cycles of persistent organic pollutants (POPs). However, experimental data and quantitative knowledge of the kinetics of uptake and depuration of most POPs by bacteria and phytoplankton are scarce. In the present paper, a procedure to predict the sorption kinetics to bacteria and phytoplankton is developed. The prediction method is the combination of a mechanistic model for sorption and quantitative structure,activity relationships relating bioconcentration factors and membrane permeability to the chemical physical-chemical properties. The model consists of two compartments where the first compartment is the cellular surface and the second compartment is the cell biomass or matrix. Equations for estimating uptake and depuration rate constants into the matrix and adsorption and desorption rate constants onto the surface are obtained. These expressions depend on the physical-chemical properties of the chemical, the environmental temperature, the microorganism size, and species-specific quality of organic matter. While microorganism shape has a secondary influence on uptake dynamics, microorganism size and chemical hydrophobicity arise as the key factors controlling the kinetics of POP incorporation into bacteria and plankton. Uptake, depuration, adsorption, and desorption rate constants are reported for POPs such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated dioxins and furans (PCDD/Fs), and POPs of emerging concern, such as polybrominated diphenyl ethers (PBDEs). Finally, implications of uptake and depuration dynamics on the biogeochemical cycling of POPs are discussed. [source]


    An early temperature-sensitive period for the plasticity of segment number in the centipede Strigamia maritima

    EVOLUTION AND DEVELOPMENT, Issue 4 2010
    Vincent Vedel
    SUMMARY Geophilomorph centipedes show variation in segment number (a) between closely related species and (b) within and between populations of the same species. We have previously shown for a Scottish population of the coastal centipede Strigamia maritima that the temperature of embryonic development is one of the factors that affects the segment number of hatchlings, and hence of adults, as these animals grow epimorphically,that is, without postembryonic addition of segments. Here, we show, using temperature-shift experiments, that the main developmental period during which embryos are sensitive to environmental temperature is surprisingly early, during blastoderm formation and before, or very shortly after, the onset of segmentation. [source]


    Central control of thermogenesis in mammals

    EXPERIMENTAL PHYSIOLOGY, Issue 7 2008
    Shaun F. Morrison
    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis. [source]


    Transport and environmental temperature variability of eggs and larvae of the Japanese anchovy (Engraulis japonicus) and Japanese sardine (Sardinops melanostictus) in the western North Pacific estimated via numerical particle-tracking experiments

    FISHERIES OCEANOGRAPHY, Issue 2 2009
    SACHIHIKO ITOH
    Abstract Numerical particle-tracking experiments were performed to investigate the transport and variability in environmental temperature experienced by eggs and larvae of Pacific stocks of the Japanese anchovy (Engraulis japonicus) and Japanese sardine (Sardinops melanostictus) using high-resolution outputs of the Ocean General Circulation Model for the Earth Simulator (OFES) and the observed distributions of eggs collected from 1978 to 2004. The modeled anchovy individuals tend to be trapped in coastal waters or transported to the Kuroshio,Oyashio transition region. In contrast, a large proportion of the sardines are transported to the Kuroshio Extension. The egg density-weighted mean environmental temperature until day 30 of the experiment was 20,24°C for the anchovy and 17,20°C for the sardine, which can be explained by spawning areas and seasons, and interannual oceanic variability. Regression analyses revealed that the contribution of environmental temperature to the logarithm of recruitment per spawning (expected to have a negative relationship with the mean mortality coefficient) was significant for both the anchovy and sardine, especially until day 30, which can be regarded as the initial stages of their life cycles. The relationship was quadratic for the anchovy, with an optimal temperature of 21,22°C, and linear for the sardine, with a negative coefficient. Differences in habitat areas and temperature responses between the sardine and anchovy are suggested to be important factors in controlling the dramatic out-of-phase fluctuations of these species. [source]


    Interplay between global patterns of environmental temperature and variation in nonshivering thermogenesis of rodent species across large spatial scales

    GLOBAL CHANGE BIOLOGY, Issue 9 2009
    ENRIQUE RODRÍGUEZ-SERRANO
    Abstract The purpose of this study was to test for correlations of mass-independent nonshivering thermogenesis (NST) in rodent species with climatic factors such as maximum and minimum geographic temperature. We first analyzed whether the responses of rodents show a phylogenetic signal. If so, and if the NST over a broad geographical range is similar, then such responses probably reflect physiological evolutionary adaptation. Our results show that NST did not show phylogenetic signal, appears to be evolutionary labile and is negatively correlated with environmental temperature. We predicted that species evolved in cold climates will exhibit higher mass-independent NST than species from warmer habitats. Indeed, we observed that the relationships between mass-independent NST and minimum temperature (rs=,0.411, P=0.009) as well as between NST and maximum temperature (rs=,0.443, P=0.004) were both negatively and significantly correlated, thus supporting our predictions. Thus, thermal physiology may be a significant factor underlying the ecological and evolutionary success of animals. Finally we suggest that due to the pressing need to explain and predict the likely biological impact of climatic change, advances in this field are necessary. [source]


    Flexible responses of insects to changing environmental temperature , early season development of Craspedolepta species on fireweed

    GLOBAL CHANGE BIOLOGY, Issue 7 2006
    IAN D. HODKINSON
    Abstract Developmental response to temperature during the critical early season growing period was investigated in two congeneric species of Craspedolepta feeding on Epilobium angustifolium at three sites at different altitudes in Norway and the UK. The larval development reaction norm to temperature, measured as accumulated day degrees, was not significantly different between Craspedolepta nebulosa and Craspedolepta subpunctata at sites where they co-occurred but C. nebulosa development was consistently more advanced at any site. For individual species the reaction norms at the lowest site (Ainsdale, UK) were similar to the intermediate site (Geilo, Norway): and there were no differences between years. Insect size remained relatively constant. However, at the highest site (Haugastøl, Norway), where C. subpunctata is unable to complete its development, the reaction norm for C. nebulosa was significantly higher than at Geilo and the individual insects produced were smaller. These adaptations allow life-history completion under limiting temperature conditions. An experiment at Ainsdale, to raise the mean temperature by around 2.5°C during the early growing season, resulted in accelerated development in both C. nebulosa and C. subpunctata but development in C. nebulosa was accelerated proportionately more. C. nebulosa thus displays the greater plasticity in developmental response to environmental temperature that allows it to occupy a greater altitudinal and latitudinal range than C. subpunctata, in which the response is less plastic and more canalized. The likely individualistic responses of the two species to climate warming are considered. [source]


    ORIGINAL ARTICLE: Ileal endogenous amino acid flow of broiler chickens under high ambient temperature

    JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 5 2010
    A. F. Soleimani
    Summary High environmental temperature has detrimental effects on the gastrointestinal tract of poultry. An experiment was conducted to determine the effect of acute heat stress on endogenous amino acid (EAA) flow in broiler chickens. A total of 90, day-old broiler chicks were housed in battery cages in an environmentally controlled chamber. Chicks were fed a nitrogen-free diet on day 42 following either no heat exposure (no-heat) or 2 weeks exposure to 35 ± 1 °C for 3 h from days 28 to 42 (2-week heat) or 1 week exposure to 35 ± 1 °C for 3 h from days 35 to 42 (1 week heat). The most abundant amino acid in the ileal flow was glutamic acid, followed by aspartic acid, serine and threonine in non-heat stressed group. The EAA flow in 1-week heat and 2-week heat birds were significantly (p < 0.05) higher than those under no heat exposure (14682, 11161 and 9597 mg/kg of dry matter intake respectively). Moreover, the EAA flow of 2-week heat group was less than 1-week heat group by approximately 36%. These observations suggest that the effect of heat stress on EAA flow is mostly quantitative; however, heat stress may also alter the content of EAA flow qualitatively. [source]


    Critical analysis of potential body temperature confounders on neurochemical endpoints caused by direct dosing and maternal separation in neonatal mice: a study of bioallethrin and deltamethrin interactions with temperature on brain muscarinic receptors

    JOURNAL OF APPLIED TOXICOLOGY, Issue 1 2003
    Jürgen Pauluhn
    Abstract The present investigation was conducted to understand better possible confounding factors caused by direct dosing of neonatal mice during the pre-weaning developmental period. By direct dosing, pups might encounter thermal challenges when temporarily removed from their ,natural habitat'. Typically, this leads to a cold environment and food deprivation (impaired lactation) and modulation of the toxic potency of the substance administered. Growth retardation as a consequence of such behavioural changes in pups makes it increasingly difficult to differentiate specific from non-specific mechanisms. Neonatal NMRI mice were dosed daily by gavage (0.7 mg kg,1 body wt.) from postnatal day (PND) 10,16 with S -bioallethrin, deltamethrin or the vehicle. Then the pups, including their non-treated foster dams, were subjected temporarily for 6 h day to a hypo-, normo- or hyperthermic environment, which was followed by normal housing. The measured temperatures in the environmental chambers were ca. 21, 25 and 30°C, respectively. Thus, temperatures in the hypo- and normothermic groups are comparable to the temperatures commonly present in testing laboratories, whereas the hyperthermic condition is that temperature typically present in the ,natural habitat' of pups. A deviation from the normal behaviour of both pups and dams was observed in the hypo- and normothermic groups. In these groups the rectal temperatures of pups were markedly decreased, especially in the early phase of the study (PND 10,12). Neonates that received either test substance displayed changes in body weights and brain weights at terminal sacrifice (PND 17) when subjected temporarily to a non-physiological environment. An enormous influence of environmental temperature on the density of muscarinic receptors in the crude synaptosomal fraction of the cerebral cortex was ascertained. In summary, these results demonstrate that the direct dosing of thermolabile neonatal mice by gavage is subject to significant artefacts that render the interpretation of findings from such studies difficult. It appears that if direct dosing of neonatal pups is mandated, and inhalation is a relevant route of exposure, the combined inhalation exposure of dams with their litters is an alternative procedure that does not cause disruption of the ,natural habitat' of pups. However, owing to their higher ventilation, under such conditions the pups may receive dosages at least double those of the dams. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Biomarkers of aging in Drosophila

    AGING CELL, Issue 4 2010
    Jake Jacobson
    Summary Low environmental temperature and dietary restriction (DR) extend lifespan in diverse organisms. In the fruit fly Drosophila, switching flies between temperatures alters the rate at which mortality subsequently increases with age but does not reverse mortality rate. In contrast, DR acts acutely to lower mortality risk; flies switched between control feeding and DR show a rapid reversal of mortality rate. Dietary restriction thus does not slow accumulation of aging-related damage. Molecular species that track the effects of temperatures on mortality but are unaltered with switches in diet are therefore potential biomarkers of aging-related damage. However, molecular species that switch upon instigation or withdrawal of DR are thus potential biomarkers of mechanisms underlying risk of mortality, but not of aging-related damage. Using this approach, we assessed several commonly used biomarkers of aging-related damage. Accumulation of fluorescent advanced glycation end products (AGEs) correlated strongly with mortality rate of flies at different temperatures but was independent of diet. Hence, fluorescent AGEs are biomarkers of aging-related damage in flies. In contrast, five oxidized and glycated protein adducts accumulated with age, but were reversible with both temperature and diet, and are therefore not markers either of acute risk of dying or of aging-related damage. Our approach provides a powerful method for identification of biomarkers of aging. [source]


    Population structure in the Atlantic salmon: insights from 40 years of research into genetic protein variation

    JOURNAL OF FISH BIOLOGY, Issue 2005
    E. Verspoor
    Electrophoretic studies of proteins remain a primary source of insight into genetic diversity in many species including the Atlantic salmon Salmo salar, one of the most culturally and economically important fish species of the North Atlantic region. Since 1966, >350 scientific papers on protein variation have been published encompassing 25 000+ salmon from over 400 locations in >200 river systems across the species' distribution. Variation has been detected at 30% of the 110 protein loci screened, though most studies examine <40. The method has been applied largely to the investigation of population structure and differentiation, but work has also led to the systematic revision of the genus Salmo and remains the primary source of insight into hybridization in the wild with brown trout Salmo trutta. Spatial patterns of differentiation show temporal stability, both within and among river systems, and strongly support structuring of the species into river and tributary specific populations and the designation of European and North American populations as distinct sub-species. They also show widespread regional differentiation within both continents, beyond the marked subcontinental differences between Baltic Sea and Atlantic Ocean populations in Europe. Most of the differentiation probably reflects gene flow and founder events associated with colonization following the retreat of the glaciers from much of the species' modern range. However, variation at MEP-2* shows strong correlations with environmental temperature, both within and among rivers, and associations with phenotypic performance. This suggests selection is acting on the locus and provides compelling evidence for the local adaptation of populations. Protein studies have led to more population centred management of the species and have been exploited in the discrimination of regional stocks in mixed stock analysis in high seas fisheries, particularly in the Baltic Sea, and as markers for the assessment of stocking success. They have also advanced insight into how the genetic character of populations can be changed in cultivation and the potential impact of salmon aquaculture and stocking on wild populations. The method has been largely superseded by DNA based analyses, but the results remain highly relevant to Atlantic salmon management and conservation and are an irreplaceable data set for studying genetic stability of populations over time. [source]


    Water temperature fluctuations and territoriality in the intertidal zone: two possible explanations for the elevational distribution of body size in Graus nigra

    JOURNAL OF FISH BIOLOGY, Issue 2 2002
    C. E. Hernández
    On the central coast of Chile, distribution of body size in Graus nigra varied with tidal pool height. With the objective of determining whether environmental temperature is one of the possible causes which explains the observed distribution pattern, two behavioural responses were analysed during an experimental period of increasing water temperature: number of opercular movements (an indirect measure of energy expenditure) and activity levels. The interactions of temperature × time and body size × time had a significant effect on the number of opercular movements. At low temperatures (13,15° C), large fish reached a maximum number of opercular movements, while small fish reached a maximum only at high temperatures (23,25° C). The interaction temperature × time had a significant effect on activity levels of different body sizes. In general, large fish appeared to be less active than small fish, however, at very high temperatures (24,26° C) all individuals increased their activity levels. These data indicate that small fish are acclimatized to live in a wider range of temperatures (13,23° C), and, for fish of all body sizes, the highest temperatures (23,26° C) probably constitute a suboptimal microhabitat. Strong territoriality was observed, with large individuals displacing smaller individuals. These data suggest that temperature is an important factor in explaining why large individuals are not present in high tidal pools (high temperatures), whereas territoriality explains why small individuals are not in low tidal pools (habitat of large individuals). [source]


    Influence of environmental temperature on composition of lipids in edible flesh of rainbow trout (Oncorhynchus mykiss)

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 14 2003
    Antonella Calabretti
    Abstract The adaptative changes in the fatty acid composition of the main lipid classes in rainbow trout (Oncorhynchus mykiss) edible flesh in response to environmental variation in water temperature were investigated. The research was carried out on intensively farmed trout sampled at different times of the year. Neutral lipids (NL), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were separated using flash chromatography. Compared with summer acclimatisation, a decrease in neutral lipids of about 19% was observed in winter, accompanied by increases in phosphatidylethanolamine and phosphatidylcholine of about 41 and 29%, respectively. The metabolic adjustment in cold adaptation caused an increase in the levels of unsaturated fatty acids and monoenes of the oleic acid ,9 family and an increase in the levels of unsaturated fatty acids of the linoleic acid ,3 family. At the same time a reduction in the levels of saturated and monounsaturated fatty acids of the oleic acid ,9 family was observed. This pattern turned out to be particularly evident in phosphatidylcholine. The net result of these changes in composition was a significant increase in the polyunsaturated/saturated and polyunsaturated/monoenic fatty acid ratios in the edible flesh. Copyright © 2003 Society of Chemical Industry [source]


    A Profound Effect of Hyperthermia on Survival of Litopenaeus vannamei Juveniles Infected with White Spot Syndrome Virus

    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2001
    Oscar M. Vidal
    This study was conducted to examine the effect of increasing seawater temperature on White Spot Syndrome Virus (WSSV) infection in juvenile Pacific White shrimp (Litopenaeus vannamei). Infection by WSSV was achieved using two methods, intramuscular injection and per os (oral) administration. Forty injected and 20 per os infected animals were kept in heated tanks at 32.3 ± 0.8 C, and the same number of WSSV infected animals were maintained in tanks at ambient temperature (25.8 ± 0.7 C). Despite the route of exposure, there were no survivors among the animals kept at ambient temperature; whereas, in heated tanks the survival of the WSSV infected juvenile shrimp was always above 80%, suggesting the existence of a beneficial effect from hyperthermia that mitigated the progression of WSSV disease. Moreover, this beneficial effect was not attributable to viral inactivation. Infected animals kept at 32 C had histologically detectable lymphoid organ spheroids suggestive of a chronic viral infection but were PCR negative (hemolymph) for WSSV. These findings might be related to low viral replication in WSSV-infected shrimp held at the higher environmental temperature. When the WSSV-infected shrimp were transferred from 32 C to ambient temperature, the mortality from WSSV ensued and was always 100%. Although the mechanism related to the beneficial effect of heating was not determined, our results indicate that increasing the water temperature modifies dramatically the natural history of the WSSV disease and the survival curves of WSSV-infected juvenile Pacific White shrimp. [source]


    Effect of seasonal programming on fetal development and longevity: Links with environmental temperature

    AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 2 2009
    Andreas D. Flouris
    This study examined the effect of birth season on fetal development and longevity using two independent databases of all Greek citizens that were born (total: 516,874) or died (total: 554,101) between 1999 and 2003. We found significantly increased birth weight, gestational age, and longevity in individuals born during the autumn and winter seasons of the year. These individuals also demonstrated statistically significantly lower prevalence rates for fetal growth restriction and premature birth. Furthermore, we found that increased temperature at birth was associated with adverse effects on fetal development and longevity. In conclusion, our results show strong effects of season of birth on fetal development and longevity mediated, at least in part, by environmental temperature at time of birth. Am. J. Hum. Biol., 2009. © 2008 Wiley-Liss, Inc. [source]


    Moulting reduces freeze susceptibility in the Antarctic mite Alaskozetes antarcticus (Michael)

    PHYSIOLOGICAL ENTOMOLOGY, Issue 4 2007
    T. C. HAWES
    Abstract The effect of moulting on the cold hardiness of the oribatid mite Alaskozetes antarcticus (Michael) is investigated. Non moulting animals show clear seasonal patterns of cold hardiness with high supercooling points (SCPs) at the peak of summer and an increasing proportion of low SCPs with declining environmental temperatures. By contrast, both field-fresh and laboratory acclimated (5 °C) mites in the moult state are consistently found to have low SCPs regardless of environmental temperature. [source]


    Stress relaxation behavior of glass fiber-reinforced polyester composites prepared by the newly proposed rubber pressure molding

    POLYMER COMPOSITES, Issue 10 2008
    Kamal K. Kar
    Stress-relaxation behavior of glass fiber-reinforced polyester composites, prepared by a recently developed manufacturing method called rubber pressure molding (RPM), is investigated with special reference to the effect of environmental temperature (,70°C to +100°C), fiber volume fraction (30,60%), and initial load level (1,5 kN). It is found that the stress-relaxation rate decreases with an increase in the applied load of composites and a decrease in temperature. Below glass transition temperature, the rate of stress relaxation increases with an increase in volume fraction of fibers in the composites, whereas above glass transition temperature, it increases with a decrease in the volume fraction of fibers. The experimental results for a given composites are summarized by four values, the slopes of the two straight lines (two separate relaxation processes), and their intercepts upon the stress axis. Both the slopes are dependent upon the applied load, temperature, and volume fraction of fibers in the composites. Relaxation times in both primary and secondary are calculated over the wide range of temperatures, loads, and volume fraction of fibers in the composites. It depends strongly on the temperature, but does not depend strongly on the applied load and volume fraction of fibers. The performances of the composites are also evaluated through conventional compression-molding process. The rate of stress relaxation is small when the composites are made of newly proposed RPM technique when compared with the conventional process. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers [source]


    Fracture behavior of polyetherimide (PEI) and interlaminar fracture of CF/PEI laminates at elevated temperatures

    POLYMER COMPOSITES, Issue 1 2005
    Ki-Young Kim
    To investigate the effects of environmental temperature on fracture behavior of a polyetherimide (PEI) thermoplastic polymer and its carbon fiber (CF/PEI) composite, experimental and numerical studies were performed on compact tension (CT) and double cantilever beam (DCB) specimens under mode-I loading. The numerical analyses were based on 2-D large deformation finite element analyses (FEA). Elevated temperatures greatly released the crack tip triaxiality (constraint) and promoted matrix deformation due to low yield strength and enhanced ductility of the PEI matrix, which resulted in the greater plane-strain fracture toughness of the bulk PEI polymer and the interlaminar fracture toughness of its composite during delamination propagation with increasing temperature. Furthermore, the high triaxiality was developed around the delamination front tip in the DCB specimen, which accounted for the poor translation of matrix toughness to the interlaminar fracture toughness by suppressing the matrix deformation and reducing the plastic energy dissipated in the plastic zone. Especially, at delamination initiation, the weakened fiber/matrix adhesion at elevated temperatures led to premature failure of fiber/matrix interface, suppressing matrix deformation and preventing the full utilization of matrix toughness. Consequently, low interlaminar fracture toughness was obtained at elevated temperatures. POLYM. COMPOS., 26:20,28, 2005. © 2004 Society of Plastics Engineers. [source]


    Temperature's influence on the activity budget, terrestriality, and sun exposure of chimpanzees in the Budongo Forest, Uganda

    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2009
    Valerie P. Kosheleff
    Abstract Chimpanzee (Pan troglodytes schweinfurthii) activity budget, terrestriality, and sun exposure were found to be influenced by the immediate environmental temperature. Thirty adult chimpanzees in the Budongo Forest, Uganda, were observed for 247 h. Temperatures in the shade and sun, sky cover, sun exposure, activity, and terrestriality were recorded at 5-min intervals at <15 m from the center of the party. Terrestriality frequency was 26.5% for females and 41.5% for males. Terrestriality and resting both show a significant positive correlation with temperature in the sun. Controlling for seven potential confounding factors, temperature in the sun remained the strongest predictor of terrestriality. The difference between temperatures in the sun and shade had a significant effect on chimpanzee sun exposure frequency. Time spent continuously in the sun was negatively correlated with temperature, beginning to decrease around 30°C, and markedly decreasing around 40°C. A concurrent experiment determined that dark pelage (lacking physiological coping mechanisms) exposed to the same solar regime can easily reach 60°C within minutes. This study indicates that both temperature in the sun and sun exposure play a role in influencing chimpanzee activity behavior, and specifically suggests that chimpanzees thermoregulate behaviorally both by moving to the ground and by decreasing their activity level. These results, in the context of deforestation and increasing global temperatures, have physiological and conservation implications for wild chimpanzees. Am J Phys Anthropol, 2009. © 2008 Wiley-Liss, Inc. [source]


    A linkage map of the porcine genome from a large-scale White Duroc × Erhualian resource population and evaluation of factors affecting recombination rates

    ANIMAL GENETICS, Issue 1 2009
    Y. Guo
    Summary A porcine genome linkage map composed of 194 microsatellite markers was constructed with a large-scale White Duroc × Erhualian resource population. The marker order on this linkage map was consistent with the USDA-MARC reference map except for two markers on SSC3, two markers on SSC13 and two markers on SSCX. The length of the sex-averaged map (2344.9 cM) was nearly the same as that of the USDA-MARC and NIAI map. Highly significant heterogeneity in recombination rates between sexes was observed. Except for SSC1 and SSC13, the female autosomes had higher average recombination rates than the male autosomes. Moreover, recombination rates in the pseudoautosomal region were greater in males than in females. These observations are consistent with those of previous reports. The recombination rates on each paternal and maternal chromosome of F2 animals were calculated. Recombination rates were not significantly affected by the age (in days) or parity of the F1 animals. However, recombination rates on paternal chromosomes were affected by the mating season of the F1 animals. This could represent an effect of environmental temperature on spermatogenesis. [source]


    Factors affecting methane production and mitigation in ruminants

    ANIMAL SCIENCE JOURNAL, Issue 1 2010
    Masaki SHIBATA
    ABSTRACT Methane (CH4) is the second most important greenhouse gas (GHG) and that emitted from enteric fermentation in livestock is the single largest source of emissions in Japan. Many factors influence ruminant CH4 production, including level of intake, type and quality of feeds and environmental temperature. The objectives of this review are to identify the factors affecting CH4 production in ruminants, to examine technologies for the mitigation of CH4 emissions from ruminants, and to identify areas requiring further research. The following equation for CH4 prediction was formulated using only dry matter intake (DMI) and has been adopted in Japan to estimate emissions from ruminant livestock for the National GHG Inventory Report: Y = ,17.766 + 42.793X , 0.849X2, where Y is CH4 production (L/day) and X is DMI (kg/day). Technologies for the mitigation of CH4 emissions from ruminants include increasing productivity by improving nutritional management, the manipulation of ruminal fermentation by changing feed composition, the addition of CH4 inhibitors, and defaunation. Considering the importance of ruminant livestock, it is essential to establish economically feasible ways of reducing ruminant CH4 production while improving productivity; it is therefore critical to conduct a full system analysis to select the best combination of approaches or new technologies to be applied under long-term field conditions. [source]


    Productivity and energy partition of late lactation dairy cows during heat exposure

    ANIMAL SCIENCE JOURNAL, Issue 1 2010
    Kyoung Hoon KIM
    ABSTRACT Three late-lactation Holstein cows were used to determine the effects of environmental temperature on performance and energy partitioning. Each cow was housed in a respiratory chamber for 30 consecutive days and exposed to three different conditions of environmental temperature: (i) 20°C and 20°C (20°C), (ii) 25°C and 20°C (25°C), (iii) 30°C and 25°C (30°C) during the day and night, respectively. The temperature was switched in an interval of 10 days. Humidity in the chamber was maintained at 55,65% through the entire experimental period. The daily mean as well as morning and evening rectal temperatures of Holstein cows increased linearly (P < 0.05) as chamber temperature increased. There was a significant linear reduction in dry matter (DM) intake (P < 0.05) and an increase in DM digestibility (P < 0.05). The response in milk yield, however, was not affected by heat stress. There were no significant differences among treatments for intake energy, heat production, net energy for lactation and net energy for gain. This results of this study disagreed with the assumption that late lactation cows gave priority to increasing body tissue at the expense of milk production under thermal stress. [source]


    Effect of high environmental temperatures on ascorbic acid, sulfhydryl residue and oxidized lipid concentrations in plasma of dairy cows

    ANIMAL SCIENCE JOURNAL, Issue 3 2007
    Masahito TANAKA
    ABSTRACT Information on oxidative stress under hot conditions from the levels of cells to organs and the whole body has accumulated in the last decades. Although a hot climate decreased dairy performance, changes of oxidative stress markers under hot conditions have remained obscure. Therefore, the effect of high environmental temperature on ascorbic acid, sulfhydryl (SH) residue and oxidized lipids concentrations in plasma from a total of 128 dairy cows was investigated. The monthly average maximum day temperature varied from 9.2°C in January to 32°C in August of 2004 in this institute. High ambient temperatures increased the rectal temperature of dairy cows up to 39.3°C in August. One of the reducing equivalents in plasma, SH residue concentration, decreased in July compared with December (P < 0.05). Another antiradical molecule, ascorbic acid concentration in plasma, also decreased in July (P < 0.01). The oxidative stress index, thiobarbituric acid reactive substance (TBARS), which was produced from the oxidation of polyunsaturated fatty acids under oxidative conditions, increased in summer (P < 0.05). A significant positive relationship of SH residue and ascorbic acid concentrations in the hot season was observed (P < 0.01). A negative correlation between rectal temperatures and ascorbic acid concentrations in the hot season was obtained (P < 0.01). However, TBARS concentration varied independently of the SH residue and ascorbic acid concentration. These results suggest that the response of oxidative stress markers of SH residue, ascorbic acid and TBARS concentration to oxidative stress under hot conditions were not shown to be the same, and that oxidative stress in dairy cows in the hot season increased. [source]


    Temperature mediates vector transmission efficiency: inoculum supply and plant infection dynamics

    ANNALS OF APPLIED BIOLOGY, Issue 3 2009
    M.P. Daugherty
    Abstract Climate, particularly environmental temperature, frequently plays an important role in disease epidemiology. This study investigated the role of environmental temperature on transmission of the generalist plant pathogen Xylella fastidiosa by its leafhopper vectors. In this system temperature is known to influence both vector performance and feeding rate, yet the implications for pathogen transmission have not been documented. Experiments were conducted over a range of temperatures to document effects on transmission efficiency of the California native Graphocephala atropunctata (blue,green sharpshooter) and the invasive Homalodisca vitripennis (glassy-winged sharpshooter). Inoculation efficiency of H. vitripennis was positively related to temperature. Graphocephala atropunctata mortality and transmission responded non-linearly to temperature, with the highest rates of both at the highest temperature. The experiment also evaluated whether differences in inoculum supply contributed to plant infection level using quantitative PCR. Although total X. fastidiosa population within G. atropunctata was not related to plant infection, the number of infectious vectors was a strong predictor of plant infection level,suggesting that the number of inoculation events is important in the development of systemic infection of X. fastidiosa in grapevines. These results, along with existing evidence from the literature, point to wide-ranging impacts of climate on the epidemiology of X. fastidiosa diseases. [source]


    Intestinal microbiota variation in Senegalese sole (Solea senegalensis) under different feeding regimes

    AQUACULTURE RESEARCH, Issue 11 2007
    Beatriz Martin-Antonio
    Abstract The aim of this study was to determine the influence of the feeding regimes in Senegalese sole (Solea senegalensis) cultured under extensive, semi-extensive and intensive production systems. A total of 254 bacterial isolates from guts of fish cultured under different production systems and feeding regimes were tested. Biochemical tests and genetic analyses based on the 16S rDNA sequence analysis were conduced to identify bacterial strains. Vibrio species were the most represented taxonomic group in the culturable microbiota of S. senegalensis guts tested. Particularly, Vibrio ichthyoenteri was the most frequently isolated Vibrio species. Comparison among diets showed a significant reduction (P<0.05) in vibrio percentages and a higher occurrence of Shewanella species in Senegalese soles fed polychaeta. In addition, a major influence of environmental temperature on microbiota composition was detected. Cold temperatures brought about a change in the percentages of Vibrio species and a higher representation of ,-Proteobacteria in both outdoor systems (extensive and semi-extensive). The significant differences between intestinal bacterial composition in Senegalese soles fed commercial diets and natural preys (polychaeta) reveal the necessity to develop specific optimized diets for the intensive rearing of this fish species. [source]


    Temperature-mediated plasticity and genetic differentiation in egg size and hatching size among populations of Crepidula (Gastropoda: Calyptraeidae)

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010
    RACHEL COLLIN
    Offspring size is a key characteristic in life histories, reflecting maternal investment per offspring and, in marine invertebrates, being linked to mode of development. Few studies have focused explicitly on intraspecific variation and plasticity in developmental characteristics such as egg size and hatching size in marine invertebrates. We measured over 1000 eggs and hatchlings of the marine gastropods Crepidula atrasolea and Crepidula ustulatulina from two sites in Florida. A common-garden experiment showed that egg size and hatching size were larger at 23 °C than at 28 °C in both species. In C. ustulatulina, the species with significant genetic population structure in cytochrome oxidase I (COI), there was a significant effect of population: Eggs and hatchlings from the Atlantic population were smaller than those from the Gulf. The two populations also differed significantly in hatchling shape. Population effects were not significant in C. atrasolea, the species with little genetic population structure in COI, and were apparent through their marginal interaction with temperature. In both species, 60,65% of the variation in egg size and hatching size was a result of variation among females and, in both species, the population from the Atlantic coast showed greater temperature-mediated plasticity than the population from the Gulf. These results demonstrate that genetic differentiation among populations, plastic responses to variation in environmental temperature, and differences between females all contribute significantly to intraspecific variation in egg size and hatching size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 489,499. [source]


    Admission rates of bipolar depressed patients increase during spring/summer and correlate with maximal environmental temperature

    BIPOLAR DISORDERS, Issue 1 2004
    Avraham Shapira
    Objective:, We intended to identify a relationship, if exists, between various climatic factors and the admission rates of bipolar affective disorder depressed patients (BPD) or major depressive disorder patients (unipolar) (UPD) to psychiatric hospitals, as well as potential seasonal variability in hospitalization rates of this population. Methods:, Data on admissions of ICD-9 BPD and UPD patients to Tel Aviv's seven public psychiatric hospitals during 11 consecutive years were collected along with concomitant meteorological information Results:, Admissions of 4117 patients with BPD and 1036 with UPD who fulfilled our specific inclusion criteria were recorded. Bipolar depressed, but not UPD, patients exhibited significant seasonal variation (higher spring and summer versus winter mean monthly admission rates), and the admission rates of patients with BPD, but not UPD, correlated significantly with mean maximal monthly environmental temperature Conclusions:, Increased environmental temperature may be a risk factor for evolvement of major depressive episode in patients with bipolar disorder with psychiatric co-morbidity, at least in cases that necessitate hospitalization and at the examined geographic/climatic region of Israel. Further large-scale studies with bipolar depressed patients with and without co-morbid disorders are needed to substantiate our findings and to determine the role of seasonal and climatic influence on this population, as well as its relationship to the pathophysiology of bipolar disorder. [source]