Home About us Contact | |||
Environmental Gradients (environmental + gradient)
Kinds of Environmental Gradients Selected AbstractsNATURAL SELECTION ALONG AN ENVIRONMENTAL GRADIENT: A CLASSIC CLINE IN MOUSE PIGMENTATIONEVOLUTION, Issue 7 2008Lynne M. Mullen We revisited a classic study of morphological variation in the oldfield mouse (Peromyscus polionotus) to estimate the strength of selection acting on pigmentation patterns and to identify the underlying genes. We measured 215 specimens collected by Francis Sumner in the 1920s from eight populations across a 155-km, environmentally variable transect from the white sands of Florida's Gulf coast to the dark, loamy soil of southeastern Alabama. Like Sumner, we found significant variation among populations: mice inhabiting coastal sand dunes had larger feet, longer tails, and lighter pigmentation than inland populations. Most striking, all seven pigmentation traits examined showed a sharp decrease in reflectance about 55 km from the coast, with most of the phenotypic change occurring over less than 10 km. The largest change in soil reflectance occurred just south of this break in pigmentation. Geographic analysis of microsatellite markers shows little interpopulation differentiation, so the abrupt change in pigmentation is not associated with recent secondary contact or reduced gene flow between adjacent populations. Using these genetic data, we estimated that the strength of selection needed to maintain the observed distribution of pigment traits ranged from 0.0004 to 21%, depending on the trait and model used. We also examined changes in allele frequency of SNPs in two pigmentation genes, Mc1r and Agouti, and show that mutations in the cis -regulatory region of Agouti may contribute to this cline in pigmentation. The concordance between environmental variation and pigmentation in the face of high levels of interpopulation gene flow strongly implies that natural selection is maintaining a steep cline in pigmentation and the genes underlying it. [source] Leaf Chemical and Optical Properties of Metrosideros polymorpha Across Environmental Gradients in HawaiiBIOTROPICA, Issue 3 2009Roberta E. Martin ABSTRACT Leaf chemical, biophysical, and optical properties were measured in 13 populations of Metrosideros polymorpha across gradients of soil fertility and climate in Hawaii. Climate (predominantly temperature) caused large changes in specific leaf area (SLA) and SLA-linked traits, including nitrogen (N) and pigment contents, as did conditions of highest soil fertility on 20 ky old substrates. When averaged by site, chemical constituent ratios containing chlorophyll (Car/Chl, Chl/N) varied more across climate than substrate gradients, while the Chl a/b ratio was similarly influenced by climate and substrate. Variations in Chl a/b ratios and SLA were similar to those found previously in a common garden of M. polymorpha taken from our climate gradient, suggesting strong genetic control over these traits. Optical reflectance indices related to photosynthetic function were closely correlated to pigment changes, varying three times more in response to climate than across substrate ages. Combined, our results suggest that variation in leaf structure, composition, and function of M. polymorpha is a result of genetic and phenotypic adaptation to environmental differences, and that these variations are greater in response to climate (especially temperature) than to soil fertility. [source] A structured and dynamic framework to advance traits-based theory and prediction in ecologyECOLOGY LETTERS, Issue 3 2010Colleen T. Webb Ecology Letters (2010) 13: 267,283 Abstract Predicting changes in community composition and ecosystem function in a rapidly changing world is a major research challenge in ecology. Traits-based approaches have elicited much recent interest, yet individual studies are not advancing a more general, predictive ecology. Significant progress will be facilitated by adopting a coherent theoretical framework comprised of three elements: an underlying trait distribution, a performance filter defining the fitness of traits in different environments, and a dynamic projection of the performance filter along some environmental gradient. This framework allows changes in the trait distribution and associated modifications to community composition or ecosystem function to be predicted across time or space. The structure and dynamics of the performance filter specify two key criteria by which we judge appropriate quantitative methods for testing traits-based hypotheses. Bayesian multilevel models, dynamical systems models and hybrid approaches meet both these criteria and have the potential to meaningfully advance traits-based ecology. [source] Advancing the metabolic theory of biodiversityECOLOGY LETTERS, Issue 10 2009James C. Stegen Abstract A component of metabolic scaling theory has worked towards understanding the influence of metabolism over the generation and maintenance of biodiversity. Specific models within this ,metabolic theory of biodiversity' (MTB) have addressed temperature gradients in speciation rate and species richness, but the scope of MTB has been questioned because of empirical departures from model predictions. In this study, we first show that a generalized MTB is not inconsistent with empirical patterns and subsequently implement an eco-evolutionary MTB which has thus far only been discussed qualitatively. More specifically, we combine a functional trait (body mass) approach and an environmental gradient (temperature) with a dynamic eco-evolutionary model that builds on the current MTB. Our approach uniquely accounts for feedbacks between ecological interactions (size-dependent competition and predation) and evolutionary rates (speciation and extinction). We investigate a simple example in which temperature influences mutation rate, and show that this single effect leads to dynamic temperature gradients in macroevolutionary rates and community structure. Early in community evolution, temperature strongly influences speciation and both speciation and extinction strongly influence species richness. Through time, niche structure evolves, speciation and extinction rates fall, and species richness becomes increasingly independent of temperature. However, significant temperature-richness gradients may persist within emergent functional (trophic) groups, especially when niche breadths are wide. Thus, there is a strong signal of both history and ecological interactions on patterns of species richness across temperature gradients. More generally, the successful implementation of an eco-evolutionary MTB opens the perspective that a process-based MTB can continue to emerge through further development of metabolic models that are explicit in terms of functional traits and environmental gradients. [source] Hydrological connectivity in coastal inland systems: lessons from a Neotropical fish metacommunityECOLOGY OF FRESHWATER FISH, Issue 1 2010P. H. M. De Macedo-Soares de Macedo-Soares PHM, Petry AC, Farjalla VF, Caramaschi EP. Hydrological connectivity in coastal inland systems: lessons from a Neotropical fish metacommunity. Ecology of Freshwater Fish 2010: 19: 7,18. © 2009 John Wiley & Sons A/S Abstract,,, We assessed the influence of hydrological connectivity in structuring fish communities through seasonal samplings of environmental variables and fishes in a coastal lagoon and associated pools in the Restinga de Jurubatiba National Park, Brazil. Community structure attributes such as species richness, numerical density and biomass, Shannon,Wiener diversity index and evenness were compared between periods of the lowest and highest hydrological connectivity, while the environmental gradient and fish zonation were explored through ordination techniques. The greater hydrological connectivity established in the rainy season promoted the homogenisation of most environmental variables and fish species, which differed markedly from the arrangement observed in the dry season. Despite variation in fish species composition, community attributes showed non-significant differences between the dry and rainy seasons. The patterns of composition and numerical density in pools were strongly influenced by local factors, especially salinity, dissolved oxygen, total phosphorous concentration and water colour in the dry season, in addition to total nitrogen concentration and depth in the rainy season. Comparable to the role played by flood pulses in river-floodplain systems, the hydrological connectivity in these tropical coastal waterbodies seems to strongly influence fish community structure, and, therefore to determine regional biodiversity. [source] Fish assemblages as influenced by environmental factors in streams in protected areas of the Czech RepublicECOLOGY OF FRESHWATER FISH, Issue 1 2006M. Humpl Abstract,,, Three streams of comparable size located in different landscape-protected areas were selected for studying the effect of environmental factors on fish assemblages using indirect (detrended correspondence analysis, DCA) and direct (canonical correspondence analysis, CCA) gradient analysis. DCA of species showed well a gradient of assemblage changes in the longitudinal profile. DCA of sites stressed the variability between the fish assemblages of the three streams. This pattern was then confirmed by the highly significant between-stream CCA. In the within-site CCA, environmental factors explained 50.7% variability for presence,absence data and 58.3% for the relative abundance data. The analysis revealed that number of ponds and land use are the most influential factors of the strongest environmental gradient. However, in the partial CCAs, factor substratum type explained the largest proportion of the variability affecting fish in their habitat choice. Generally, presence,absence and relative abundance data of fish gave similar results in both DCA and CCA analyses; the same environmental factors proved to be important in both data type analyses. The environmental factors explain more variability than the regional (between-stream) one. The total proportion of variability explained by the presence,absence data analysis was 71.9% and in the relative abundance analysis even 80.8%. The environmental factors measured during the field survey explain 2.1- and 3.4-times more assemblages' variability than factors measured from a hydrological map. Resumen 1. Tres ríos de tamaño comparable localizados en diferentes áreas de paisaje protegido de la República Checa fueron seleccionados para estudiar el efecto de factores ambientales sobre los ensamblajes de peces. Para ello, utilizando análisis de gradientes indirectos (DCA) y directos (CCA). 2. El DCA para las especies enfatizó la variabilidad entre los ensamblajes de peces de los tres ríos. Este patrón fue confirmado por un CCA altamente significativo. Para la variabilidad dentro de la localidad, un CCA reveló que los factores ambientales explicaron un 50.7% para datos de presencia-ausencia y un 58.3% para las abundancias relativas. 3. Los análisis revelaron que el número de pozas y el uso del suelo fueron los factores de mayor influencia en el gradiente ambiental. Sin embargo, en el CCA parcial, el tipo de sustrato explicó la mayor proporción de la variabilidad que afecta a los peces en la elección de hábitat. 4. Generalmente los datos de presencia-ausencia y abundancia relativa produjeron resultados similares tanto en los análisis DCA como en los CCA; los mismos factores ambientales probaron ser importantes en los análisis de ambos tipos de datos. Los factores ambientales explicaron mas variabilidad que los regionales (entre ríos). La proporción total de variabilidad explicada por el análisis de los datos de presencia-ausencia fue 71.9% mientras que para las abundancias relativas fue de 80.8%. Los factores ambientales medidos durante los muestreos de campo explicaron 2.1 y 3.4 veces mas variabilidad que los factores medidos sobre mapas hidrológicos. [source] ECOLOGICAL DIFFERENTIATION AND DIPLOID SUPERIORITY ACROSS A MOVING PLOIDY CONTACT ZONEEVOLUTION, Issue 1 2007Richard J. A. Buggs Plant polyploid complexes provide useful model systems for distinguishing between adaptive and nonadaptive causes of parapatric distributions in closely related lineages. Polyploidy often gives rise to morphological and physiological changes, which may be adaptive to different environments, but separate distributions may also be maintained by reproductive interference caused by postzygotic reproductive isolation. Here, we test the hypothesis that diploid and descendent polyploid races of the wind-pollinated herb Mercurialis annua, which are found in parapatry over an environmental gradient in northeast Spain, are differentiated in their ecophysiology and life history. We also ask whether any such differences represent adaptations to their different natural environments. On the basis of a series of reciprocal transplant experiments in the field, and experiments under controlled conditions, we found that diploid and polyploid populations of M. annua are ecologically differentiated, but that they do not show local adaptation; rather, the diploids have higher fitness than the polyploids across both diploid- and polyploid-occupied regions. In fact, diploids are currently displacing polyploids by advancing south on two separate fronts in Spain, and previous work has shown that this displacement is being driven to a large extent by asymmetrical pollen swamping. Our results here suggest that ecophysiological superiority of the diploids may also be contributing to their expansion. [source] REPLICATED EVOLUTION OF INTEGRATED PLASTIC RESPONSES DURING EARLY ADAPTIVE DIVERGENCEEVOLUTION, Issue 4 2006Kevin J. Parsons Abstract Colonization of a novel environment is expected to result in adaptive divergence from the ancestral population when selection favors a new phenotypic optimum. Local adaptation in the new environment occurs through the accumulation and integration of character states that positively affect fitness. The role played by plastic traits in adaptation to a novel environment has generally been ignored, except for variable environments. We propose that if conditions in a relatively stable but novel environment induce phenotypically plastic responses in many traits, and if genetic variation exists in the form of those responses, then selection may initially favor the accumulation and integration of functionally useful plastic responses. Early divergence between ancestral and colonist forms will then occur with respect to their plastic responses across the gradient bounded by ancestral and novel environmental conditions. To test this, we compared the magnitude, integration, and pattern of plastic character responses in external body form induced by shallow versus open water conditions between two sunfish ecomorphs that coexist in four postglacial lakes. The novel sunfish ecomorph is present in the deeper open water habitat, whereas the ancestral ecomorph inhabits the shallow waters along the lake margin. Plastic responses by open water ecomorphs were more correlated than those of their local shallow water ecomorph in two of the populations, whereas equal levels of correlated plastic character responses occurred between ecomorphs in the other two populations. Small but persistent differences occurred between ecomorph pairs in the pattern of their character responses, suggesting a recent divergence. Open water ecomorphs shared some similarities in the covariance among plastic responses to rearing environment. Replication in the form of correlated plastic responses among populations of open water ecomorphs suggests that plastic character states may evolve under selection. Variation between ecomorphs and among lake populations in the covariance of plastic responses suggests the presence of genetic variation in plastic character responses. In three populations, open water ecomorphs also exhibited larger plastic responses to the environmental gradient than the local shallow water ecomorph. This could account for the greater integration of plastic responses in open water ecomorphs in two of the populations. This suggests that the plastic responses of local sunfish ecomorphs can diverge through changes in the magnitude and coordination of plastic responses. Although these results require further investigation, they suggest that early adaptive evolution in a novel environment can include changes to plastic character states. The genetic assimilation of coordinated plastic responses could result in the further, and possibly rapid, divergence of such populations and could also account for the evolution of genes of major effect that contribute to suites of phenotypic differences between divergent populations. [source] Spatial and temporal analysis of vegetation mosaics for conservation: poor fen communities in a Cornish valley mireJOURNAL OF BIOGEOGRAPHY, Issue 9 2003E. J. Southall Abstract Aim Biogeographers increasingly realize the importance of seeing plant communities as spatial mosaics and understanding the spatial and temporal heterogeneity of a site is often a key to successful conservation. The aim of this paper is to examine the approaches to the description and analysis of spatial and temporal variation in sub-communities within patch mosaics of vegetation in order to inform conservation management. The activities of the tin streaming industry in Cornwall over the last century have created a highly varied mosaic of poor fen vegetation on Goss Moor National Nature Reserve (NNR). The wetland mosaics comprise dry hummocks and different sized wet pools. The size and depth of the pools determines the rate and type of vegetation that develops, as does the nature of boundary or edge. The ergodic hypothesis is used to describe the various plant sub-communities and their boundaries to identify pathways of hydroseral succession. A further aim was to test the use of Ellenberg Indicator (EI) values as a tool for the rapid description of spatial and temporal environmental change on wetland sites with a view to their management. Location Goss Moor National Nature Reserve, Cornwall, UK. Methods An extensive survey of the whole wetland complex was undertaken to identify patches of poor fen vegetation containing Potentilla palustris (L.) Scop. and Menyanthes trifoliata L. At each patch, species abundance data were collected as well as associated environmental information such as depth of the organic layer and standing water depth, patch location, patch size and boundary type. The plant sub-communities present were defined using techniques of numerical classification [two-way indicator species analysis (twinspan)] and ordination [detrended correspondence analysis (DCA)] and these were ordered using the ergodic hypothesis in order to characterize the stages of the hydrosere. Floristic and environmental relationships were examined using canonical correspondence analysis (CCA). Further environmental differences between the poor fen sub-community types were characterized by weighted EI values for acidity (R), moisture (F), nitrogen (N) and light (L). Results and conclusions Twelve poor fen sub-community types were described and found to be distributed along a primary environmental gradient of organic matter depth, surface water height and bare substrate. Separation of the poor fen communities by a moisture gradient was considered as spatial evidence for hydroseral succession, which begins with the colonization of open-water pools created by tin excavations. High water levels were associated with the swamp communities, increased organic depth was associated with poor fen, and the type of boundary was shown to affect the resulting community composition. Weighted Community Ellenberg Indicator values for nitrogen, light, reaction and moisture are recommended as an effective tool for indicating differences between plant (sub-)communities. The importance of examining sub-community mosaics in the study of hydroseral development is stressed and the manner in which both sets of information may be used to underpin the conservation management of the site is demonstrated. [source] Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest fernsJOURNAL OF ECOLOGY, Issue 1 2006MIRKKA M. JONES Summary 1Field studies to evaluate the roles of environmental variation and random dispersal in explaining variation in the floristic composition of rain forest plants at landscape to regional scales have yet to reach a consensus. Moreover, only one study has focused on scales below 10 km2, where the effects of dispersal limitation are expected to be easiest to observe. 2In the present study, we estimate the importance of differences in some key environmental variables (describing canopy openness, soils and topography) relative to the geographical distances between sample plots as determinants of differences in pteridophyte (ferns and fern allies) species composition between plots within a c. 5.7 km2 lowland rain forest site in Costa Rica. 3To assess the relative importance of environmental vs. geographical distances in relation to the length of environmental gradient covered, we compared the results obtained over the full range of soil types, including swamps, with those for upland soils alone. 4Environmental variability was found to be a far stronger predictor of changes in floristic differences than the geographical distance between sample plots. In particular, differences in soil nutrient content, drainage and canopy openness correlated with floristic differences. 5The decline in mean floristic similarity with increasing geographical distance was stronger than proposed by the random dispersal model over short distances (up to c. 100 m), which is probably attributable to both dispersal limitation and environmental changes. The scatter around the mean was large at all distances. 6Our initial expectation was that the effects of dispersal limitation (represented by geographical distance) on observed patterns of floristic similarity would be stronger, and those of environmental differences weaker, than at broader spatial scales. Instead, these results suggest that the niche assembly view is a more accurate representation of pteridophyte communities at local to mesoscales than the dispersal assembly view. [source] Changes of taxonomic and trophic structure of fish assemblages along an environmental gradient in the Upper Beni watershed (Bolivia)JOURNAL OF FISH BIOLOGY, Issue 1 2006M. Pouilly The distribution and the diet of 28 fish species were evaluated, during the dry season, in 12 streams of the Upper Beni watershed (Amazon basin, Bolivia). The 12 streams were of similar size (stream width and water depth) but situated on a gradient of altitude in the Andean and sub-Andean areas. The environmental conditions in the stream changed in relation to the altitude. As altitude decreased, slope and water velocity also decreased, while temperature, conductivity, pH and the proportion of pools increased. Although the diets of the species were mainly based on two aquatic autochthonous food resources, invertebrates and sediment, species were classified into five trophic guilds: detritivores, algivores, piscivores, invertivores-omnivores and aquatic specialist invertivores. In all streams invertivores dominated or co-dominated with detritivores. The trophic structure of the assemblages, however, changed in relation to the environmental gradient. The fish species richness increased and the trophic composition became more diverse at lower altitudes, when slope decreased and temperature increased. At the same time, the relative number of invertivore species decreased, whereas the relative number of detritivore, algivore and piscivore species increased. Decreasing altitude appeared to play a role similar to increasing stream size along the longitudinal gradient. This could be explained by geomorphological and temperature variations that may generate environmental conditions favourable to an increase of productivity. [source] Behavioural interactions between native smokey dace and introduced yellowfin shiner: implications from habitat selection theory for an ongoing invasionJOURNAL OF FISH BIOLOGY, Issue 2003C. M. Wagner The occupation of adjacent, non-overlapping positions along environmental gradients by closely related and ecologically similar species has drawn considerable attention from ecologists over the past decades. Condition-specific competition, wherein competitive superiority varies with the abiotic environmental gradient, has been proposed as the major structuring force behind such distributions. These concepts, however, are generally applied to explain the contemporary distribution of organisms that share an evolutionary history. Our aim was to apply these concepts to the naive interactions between native and introduced fishes. In 1990 yellowfin shiner (Notropis lutipinnis) were introduced into the headwaters of the Little Tennessee River of western North Carolina, U.S.A. where it exhibits microhabitat preferences that overlap significantly with those of a threatened native minnow, the smokey dace (Clinostomus funduloides raneyi). Previous research has established that these drift-feeding minnows: (1) differ in their average ability to intercept drifting prey as a function of water velocity; (2) generally occupy focal-point velocities that maximize the rate of prey capture; and, (3) occasionally defend the forward positions in foraging aggregations that form in high quality patches. We present the results of a series of experiments designed to: (1) evaluate the role of aggression in the establishment and maintenance of preferred foraging positions in drift-feeding minnows; (2) test the effects of prey availability, group size, and velocity on dominance rank, spatial position in groups, and feeding rates of individuals; and, (3) evaluate the potential for condition-specific competition to establish competitive refugia for the native within the natural heterogeneity of mountain streams. [source] Intensity and Importance of Competition for a Grass (Festuca rubra) and a Legume (Trifolium pratense) Vary with Environmental ChangesJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 12 2008Junyan Zhang Abstract How plant competition varies across environmental gradients has been a long debate among ecologists. We conducted a growth chamber experiment to determine the intensity and importance of competition for plants grown in changed environmental conditions. Festuca rubra and Trifolium pratense were grown in monoculture and in two- and/or three-species mixtures under three environmental treatments. The measured competitive variations in terms of growth (height and biomass) were species-dependent. Competition intensity for Festuca increased with decreased productivity, whilst competition importance displayed a humpback response. However, significant response was detected in neither competition intensity nor importance for Trifolium. Intensity and importance of competition followed different response patterns, suggesting that they may not be correlated along an environmental gradient. The biological and physiological variables of plants play an important role to determine the interspecific competition associated with competition intensity and importance. However, the competitive feature can be modified by multiple environmental changes which may increase or hinder how competitive a plant is. [source] Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variablesJOURNAL OF QUATERNARY SCIENCE, Issue 5-6 2002Dan J. Charman Abstract Sea-level reconstruction from biological indicators in saltmarsh sediments requires an understanding of the modern ecology of the organisms concerned. Previous work suggested that testate amoebae are a potential new group of organisms to use for sea-level reconstruction, especially combined with diatoms and foraminifera. This paper analyses data from three saltmarshes on the Taf estuary, South Wales, the River Erme, Devon, and at Brancaster, Norfolk (UK) to (i) test for the presence and zonation of testate amoebae in relation to elevation; (ii) examine the similarity of zonation patterns between marshes; and (iii) explore the relationship between assemblage composition and a wider range of environmental variables. In addition we provide an update on the identification of testate amoebae on saltmarshes. Our results confirm that at all sites the primary environmental gradient is tidal inundation. Major changes in taxa along the tidal gradient are similar except for the lowest elevations, where different taxa become dominant at different sites. Canonical correspondence analysis (CCA) shows that assemblage composition is also strongly related to other variables, independent of the tidal position. Salinity, particle size and organic matter content are particularly important, and there is a statistically significant geographical effect on assemblages. Relationships between sea-level and assemblage composition are often stronger for individual sites, suggesting that local data sets should be used for quantitative sea-level reconstructions. However, the combined data set would provide more robust estimates of past sea-level change from fossil data. Other environmental variables explain as much of the variability in species assemblages as tidal parameters and should be considered more often in sea-level reconstructions based on microfossil indicators. Copyright © 2002 John Wiley & Sons, Ltd. [source] Vegetation patterns and environmental gradients in tropical dry forests of the northern Yucatan PeninsulaJOURNAL OF VEGETATION SCIENCE, Issue 2 2004D.A. White Patterns of plant species composition and their relationships to soil and topographic variables were investigated in tropical dry forests across the north central Yucatan, Mexico. Seven sites were studied in the oldest accessible forests along a 200,km transect oriented northwest to southeast; an eighth site was located in a little-disturbed area located 75 km northeast of the transect. Two of the sites were on Mayan ruins. All sites were sampled using 9,24, 10m × 20m plots ( Directional positive feedback and pattern at an alpine tree lineJOURNAL OF VEGETATION SCIENCE, Issue 1 2004Kathryn J. Alftine Lesica (2002) Abstract. The spatial pattern at alpine tree line may be part of a feedback process in which wind plays a central role. The basic aspects of such a feedback were embedded in a cellular automaton. Spatial metrics of the patterns generated by this simulation and those of observed patterns at a windy tree line site were ordinated using Principal Component Analysis. Only the simulations that included a directionally weighted feedback fell close to the observed sites in ordination space. MANOVA indicated that the directionally weighted feedback is most important in structuring the tree line pattern, but that random hotspots for establishment and the overall steepness of the environmental gradient from forest to tundra in space also have an effect. The importance of wind in determining feedback with the spatial pattern of a canopy indicates that nonlinear reactions to climatic change are likely. [source] Divergent character clines across a recent secondary contact zone in a Hispaniolan lizardJOURNAL OF ZOOLOGY, Issue 3 2008M. E. Gifford Abstract Studies of genetic contact zones provide valuable information regarding the processes of population divergence, adaptation and speciation. In this paper, I examine transitions in morphology, mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) haplotypes across a recent secondary contact zone in a Hispaniolan lizard Ameiva chrysolaema. Maximum likelihood cline fitting analyses suggest non-coincidence of cline centers and that the mtDNA cline is significantly displaced to the west of the remaining clines. nDNA and morphological clines are coincident and tend to be associated with the prevailing environmental gradient. The lack of cytonuclear disequilibrium near the center of the contact zone and the non-coincidence of character clines suggest that this zone does not conform to a tension zone model of hybridization; thus, gene flow across the zone does not seem to be impeded. The extremely narrow width of the dorsal scale size cline and the close association of this cline with the steepness of the environmental (precipitation) gradient suggest that this character may be under environmental selection. Taken together, this contact zone appears to be structured by a combination of mtDNA introgression, possibly associated with eastward movement of the zone, and environmental selection on some characters. [source] Local forest environment largely affects below-ground growth, clonal diversity and fine-scale spatial genetic structure in the temperate deciduous forest herb Paris quadrifoliaMOLECULAR ECOLOGY, Issue 14 2005HANS JACQUEMYN Abstract Paris quadrifolia (herb Paris) is a long-lived, clonal woodland herb that shows strong differences in local population size and shoot density along an environmental gradient of soil and light conditions. This environmentally based structuring may be mediated by differences in clonal growth and seedling recruitment through sexual reproduction. To study the interrelationship between environmental conditions and spatial patterns of clonal growth, the spatial genetic structure of four P. quadrifolia populations growing in strongly contrasting sites was determined. In the first place, plant excavations were performed in order to (i) determine differences in below-ground growth of genets, (ii) investigate connectedness of ramets and (iii) determine total genet size. Although no differences in internode length were found among sites, clones in moist sites were much smaller (genets usually consisted of 1,3 interconnected shoots, most of them flowering) than genets in dry sites, which consisted of up to 15 interconnected shoots, the majority of which were vegetative. Further, amplified fragment length polymorphism (AFLP) markers were used. Clonal diversity was higher in populations located in moist and productive ash,poplar forests compared to those found in drier and less productive mixed forest sites (G/N: 0.27 and 0.14 and Simpson's D: 0.84 and 0.75, respectively). Patterns of spatial population genetic structure under dry conditions revealed several large clones dominating the entire population, whereas in moist sites many small genets were observed. Nevertheless, strong spatial genetic structure of the genet population was observed. Our results clearly demonstrate that patterns of clonal diversity and growth form of P. quadrifolia differ among environments. Limited seedling recruitment and large clone sizes due to higher connectedness of ramets explain the low clonal diversity in dry sites. In moist sites, higher levels of clonal diversity and small clone sizes indicate repeated seedling recruitment, whereas strong spatial genetic structure suggests limited seed dispersal within populations. [source] Metapopulation dynamics across gradients , the relation between colonization and extinction in shaping the range edgeOIKOS, Issue 10 2009Beáta Oborny We study the dynamics of a metapopulation in which the rates of colonization and/or extinction change along an environmental gradient. Spatially explicit simulations are applied to compare two cases: in parent-dependent colonization (PDC) the rate of colonization is limited by the production of new individuals; in offspring-dependent colonization (ODC) it is limited by the success of establishment of the offspring. Thus, PDC depends on the quality of the parent's site, while ODC is dependent on the offspring's site. We combine PDC and ODC in a spatially implicit model. We study the steady-state distribution of a metapopulation, and ask whether the local densities of occupied sites at each position x along the gradient could be predicted from the local rates of colonization c(x) and extinction e(x). This prediction is not trivial, since the sites are connected, enabling a flow of individuals from more favorable to less favorable sites. The results show that at ODC a single parameter, c(x)/e(x), is sufficient for the prediction. Therefore, different species and geographic regions can be directly compared by appropriate rescaling: choosing the local average lifetime of occupancy, 1/e(x), for a time unit at each point along the gradient. This permits generalizations about the shape of range edges, and can help to predict the position of the boundary of a species' distribution. At PDC, rescaling is not possible: the whole profile of c(x) and e(x) along the gradient has to be taken into consideration. Nevertheless, rescaling gives a good approximation when the parent-dependent component of colonization does not change abruptly across space. [source] Differences in habitat quality explain nestedness in a land snail meta-communityOIKOS, Issue 2 2005Kristoffer Hylander We set up two alternative hypotheses on how environmental variables could foster nestedness; one of "nested habitats" and another of "nested habitat quality". The former hypothesis refers to situations where the nestedness of species depends on a nestedness of discrete habitats. The latter considers situations where all species in an assemblage increase in abundance along the same environmental gradient, but differ in specialisation or tolerance. We tested whether litter-dwelling land snails (terrestrial gastropods) in boreal riparian forest exhibited a nested community structure, whether such a pattern was related to differences in environmental variables among sites, and which of the two hypotheses that best could account for the found pattern. We sampled litter from 100 m2 plots in 29 mature riparian forest sites along small streams in the boreal zone of Sweden. The number of snail species varied between 3 and 14 per site. Ranking the species-by-site matrix by PCA scores of the first ordination axis revealed a similarly significant nested pattern as when the matrix was sorted by number of species, showing that the species composition in this meta-community can be properly described as nested. Several environmental variables, most notably pH index, were correlated with the first PCA axis. All but two species had positive eigenvectors in the PCA ordination and the abundance increased considerably along the gradient for most of the species implying that the hypothesis of "nested habitats" was rejected in favour of the "nested habitat quality" hypothesis. Analyses of nestedness have seldom been performed on equal sized plots, and our study shows the importance of understanding that variation in environmental variables among sites can result in nested communities. The conservation implications are different depending on which of our two hypotheses is supported; a conservation focus on species "hotspots" is more appropriate if the communities are nested because of "nested habitat quality". [source] Changes in plant interactions along a gradient of environmental stressOIKOS, Issue 1 2001Francisco I. Pugnaire A combination of competition and facilitation effects operating simultaneously among plant species appears to be the rule in nature, where these effects change along productivity gradients often in a non-proportional manner. We investigated changes in competition and facilitation between a leguminous shrub, Retama sphaerocarpa, and its associate understorey species along an environmental gradient in semi-arid southeast Spain. Our results show a change in the net balance of the interaction between the shrub and several of its associated species, from clearly positive in the water-stressed, infertile environment to neutral or even negative in the more fertile habitat. There was a weakening of facilitation along the fertility gradient as a consequence of improved abiotic conditions. Competition was the most intense for below-ground resources in the less fertile environment while total competition tended to increase towards the more productive end of the gradient. Changes in the balance of the interaction between and among different plant species along the gradient of stress were caused by a decline in facilitation rather than by a change in competition. As both competition intensity and facilitation change along gradients of resource availability, plant interactions are best viewed as dynamic relationships, the outcome of which depends on abiotic conditions. [source] Effects of forest management on epiphytic lichen diversity in Mediterranean forestsAPPLIED VEGETATION SCIENCE, Issue 2 2010Gregorio Aragón Abstract Question: What are the responses of epiphytic lichens to the intensity of management along a large environmental gradient in Mediterranean Quercus forests? Location: Central Spain. Methods: This study was carried out on 4590 trees located in 306 forest stands dominated by Quercus faginea or Quercus ilex ssp. ballota. The effect of forest management and other predictor variables on several species diversity indicators were studied. Variables modelled were total species richness, cyanolichen richness and community composition. A large number of predictor variables were included: forest fragmentation (patch size, stand variability), climate and topographic (altitude, slope, sun radiation, annual rainfall and mean annual temperature) and intensity of management. General linear models and constrained ordination techniques were used to model community traits and species composition, respectively. Results: Total richness and especially cyanolichens richness were significantly and negatively affected by the intensity of management. Lichen composition was influenced by management intensity, climatic and topographic variables and stand variability. Conclusions: In Mediterranean forests, human activities related to forestry, agricultural and livestock use cause impoverishment of lichen communities, including the local disappearance of the most demanding species. The conservation of unmanaged forests with a dense canopy is crucial for lichen diversity. [source] A baseline biological survey of the proposed Taputeranga Marine Reserve (Wellington, New Zealand): spatial and temporal variability along a natural environmental gradientAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2009Anjali Pande Abstract 1.Four macroalgal, four macroinvertebrate and eight fish species were surveyed at eight sites (three inside, five outside the proposed reserve) over three years before the establishment of the Taputeranga Marine Reserve (MR) on Cook Strait (Wellington, New Zealand). This baseline data set was used to estimate temporal and spatial variability in size and abundance of these taxa, and will be used to quantify taxon-specific changes in size and abundance once the MR is established. 2.Statistically significant differences in size and/or abundance were observed for many taxa among the sites. These differences are consistent with the existence of a natural environmental gradient from the west (entrance to Cook Strait) to the east (Wellington Harbour). This gradient highlights the importance of conducting a pre-reserve baseline survey at multiple sites and over multiple years to better understand the conservation or fisheries benefits that MRs are expected to deliver. 3.Two macroalgal, one macroinvertebrate, and six fish species showed statistically significant seasonal variation in abundance. Subsequent multi-taxa monitoring needs to include a seasonal component to capture this natural variability. 4.This multi-site and multi-year data set represents one of the most comprehensive and robust baseline data sets available anywhere in the world. It will be used to quantify the ecological changes associated with a newly established full no-take marine reserve. Ongoing monitoring will enhance understanding of the sizes and abundances of key taxa, allow a detailed determination of the conservation effects of reserve establishment, and inform management decisions for Wellington's south coast. Copyright © 2008 John Wiley & Sons, Ltd. [source] Mammal mycophagy and fungal spore dispersal across a steep environmental gradient in eastern AustraliaAUSTRAL ECOLOGY, Issue 1 2009KARL VERNES Abstract We examined changes in the types of fungi consumed by six species of small mammals across a habitat gradient in north-eastern New South Wales that graded from swamp, to woodland, to open forest and then to rainforest. All mammals ate some fungus, but only bush rats (Rattus fuscipes) regularly did so, and their diet included most of the fungal taxa that we identified across all mammals in the study. The composition of bush rat diet changed significantly with each change in habitat from woodland, to forest, to rainforest. In particular, there was a significant difference in the diets of rats caught either side of the open forest-rainforest ecotone, which marks the change in fungal community from one dominated by ectomycorrhizal fungi, to a community dominated by arbuscular mycorrhizal fungi. Movement patterns of bush rats living around the open forest-rainforest ecotone suggest that they transport fungal spores between these contrasting fungal communities. Therefore, bush rats have the potential, by way of spore dispersal, to influence the structure of vegetation communities. [source] Impact of feral water buffalo and fire on growth and survival of mature savanna trees: An experimental field study in Kakadu National Park, northern AustraliaAUSTRAL ECOLOGY, Issue 6 2005PATRICIA A. WERNER Abstract The impact of feral Asian water buffalo (Bubalus bubalis) and season of fire on growth and survival of mature trees was monitored over 8 years in the eucalypt savannas of Kakadu National Park. Permanently marked plots were paired on either side of a 25-km-long buffalo-proof fence at three locations on an elevational gradient, from ridge-top to the edge of a floodplain; buffalo were removed from one side of the fence. All 750 trees ,,1.4 m height were permanently marked; survival and diameter of each tree was measured annually; 26 species were grouped into four eco-taxonomic groups. The buffalo experiment was maintained for 7 years; trees were monitored an additional year. Fires were excluded from all sites the first 3 years, allowed to occur opportunistically for 4 years and excluded for the final year. Fires were of two main types: low-intensity early dry season and high-intensity late dry season. Growth rates of trees were size-specific and positively related to diameters as exponential functions; trees grew slowest on the two ends of the gradient. Eucalypt mortality rates were 1.5 and 3 times lower than those of pantropics and of arborescent monocots, respectively, but the relative advantage was lost with fires or buffalo grazing. Without buffalo grazing, ground level biomass was 5,8 t ha,1 compared with 2,3 t ha,1, within 3 years. In buffalo-absent plots, trees grew significantly slower on the dry ridge and slope, and had higher mortality across the entire gradient, compared with trees in buffalo-present plots. At the floodplain margin, mortality of small palms was higher in buffalo-present sites, most likely due to associated heavy infestations of weeds. Low-intensity fires produced tree growth and mortality values similar to no-fire, in general, but, like buffalo, provided a ,fertilization' effect for Eucalyptus miniata and Eucalyptus tetrodonta, increasing growth in all size classes. High-intensity fires reduced growth and increased mortality of all functional groups, especially the smallest and largest (>35 cm d.b.h.) trees. When buffalo and fires were excluded in the final year, there were no differences in growth or mortality between paired sites across the environmental gradient. After 8 years, the total numbers of trees in buffalo-absent plots were only 80% of the number in buffalo-present plots, due to relatively greater recruitment of new trees in buffalo-present plots; fire-sensitive pantropics were particularly disadvantaged. Since the removal of buffalo is disadvantageous, at least over the first years, to savanna tree growth and survival due to a rebound effect of the ground-level vegetation and subsequent changes in fire-vegetation interactions, process-orientated management aimed at reducing fuel loads and competitive pressure may be required in order to return the system to a previous state. The ,footprint' of 30 years of heavy grazing by buffalo has implications for the interpretation of previous studies on fire-vegetation dynamics and for current research on vegetation change in these savannas. [source] The Analysis of Biodiversity Using Rank Abundance DistributionsBIOMETRICS, Issue 1 2010Scott D. Foster Summary Biodiversity is an important topic of ecological research. A common form of data collected to investigate patterns of biodiversity is the number of individuals of each species at a series of locations. These data contain information on the number of individuals (abundance), the number of species (richness), and the relative proportion of each species within the sampled assemblage (evenness). If there are enough sampled locations across an environmental gradient then the data should contain information on how these three attributes of biodiversity change over gradients. We show that the rank abundance distribution (RAD) representation of the data provides a convenient method for quantifying these three attributes constituting biodiversity. We present a statistical framework for modeling RADs and allow their multivariate distribution to vary according to environmental gradients. The method relies on three models: a negative binomial model, a truncated negative binomial model, and a novel model based on a modified Dirichlet-multinomial that allows for a particular type of heterogeneity observed in RAD data. The method is motivated by, and applied to, a large-scale marine survey off the coast of Western Australia, Australia. It provides a rich description of biodiversity and how it changes with environmental conditions. [source] Morphological flexibility across an environmental gradient in the epiphytic orchid, Tolumnia variegata: complicating patterns of fitnessBOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2010MARIELY MORALES Deceit-pollinated orchid species show substantial variation in floral traits, which may be maintained by genetic drift or various forms of selection, or may reflect phenotypic plasticity. We explored how much plasticity occurs in both vegetative and floral traits of Tolumnia variegata (Oncidiinae, Orchidaceae) across two different light environments in Puerto Rico using data from a reciprocal transplant experiment. We also examined how fruit set, a measure of reproductive success and a surrogate for fitness, is associated with this morphological variation, and whether it changes over time. Tolumnia variegata responded to environmental variables in multiple ways. Vegetative characters were more plastic than those associated with sexual reproduction. Transplant effects accounted for significant variation in flower length, lip length, number of inflorescences, peduncle length, leaf length and the total number of ramets, but responses were not always consistent among years. Phenotypic selection on morphological characters was dependent on plant location. The trends detected were complex, and often inconsistent across years, probably as a result of wetter and drier years than average. Overall fruit set was quite variable among plants, averaging 15%, with no significant differences among sun and shade plants. Although reproductive success was similar among sites, habitat heterogeneity and annual variation had an effect on morphological expression, which sometimes modified the trajectories of phenotypic selection. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163, 431,446. [source] A rapid technique for assessing the suitability of areas for invasive species applied to New Zealand's riversDIVERSITY AND DISTRIBUTIONS, Issue 2 2008Cathy Kilroy ABSTRACT Early responses to incursions of non-indigenous species (NIS) into new areas include modelling and surveillance to define the organisms' potential and actual distributions. For well-studied invasive species, predictive models can be developed based on quantitative data describing environmental tolerances. In late 2004, an invasive freshwater diatom Didymosphenia geminata, an NIS for which we had no such quantitative data, was detected in a New Zealand river. We describe a procedure used to rapidly develop a classification of suitability for all New Zealand's rivers, based on two sources of information. First, from a review of the limited available literature and unpublished data, we determined that temperature, hydrological and substrate stability, light availability, and water pH were the most important environmental gradients determining D. geminata's broad-scale distribution and capacity for establishing and forming blooms in rivers. The second information source was a GIS-based river network developed for a national classification of New Zealand's rivers, with associated data describing environmental characteristics of each section of the network. We used six variables that were available for every section of the network as surrogates for the environmental gradients that determine suitability. We then determined the environmental distance of all the river sections in the network from our assessment of the optimal conditions conducive to D. geminata blooms. The analysis suggested that > 70% of New Zealand's river sections (stream order > 3) fell into the two highest suitability categories (on a five-point scale). At the time of writing, D. geminata had spread to 12 catchments, all of which were within these two categories. The technique is applicable in initial responses to incursions of NIS where quantitative information is limited, and makes optimal use of available qualitative information. Our assessment contributed to evaluations of the potential ecological, social, and economic impacts of D. geminata and is currently being used to stratify site selection for ongoing surveillance. [source] Invasive exotic aoudad (Ammotragus lervia) as a major threat to native Iberian ibex (Capra pyrenaica): a habitat suitability model approachDIVERSITY AND DISTRIBUTIONS, Issue 5 2007Pelayo Acevedo ABSTRACT The introduction of alien species to new environments is one of the main threats to the conservation of biodiversity. One particularly problematic example is that of wild ungulates which are increasingly being established in regions outside their natural distribution range due to human hunting interests. Unfortunately, we know little of the effects these large herbivores may have on the host ecosystems. This study deals with a first comparative analysis of the habitat requirements of two ungulate species that may be facing competition for resources in the south of Europe: the native Iberian ibex (Capra pyrenaica) and the exotic aoudad (Ammotragus lervia). The aoudad is a North African caprid introduced in 1970 as a game species in south-eastern Spain. It has adapted well, and populations have been freely expanding since then. Ecological Niche Factor Analysis is used to describe the realized niche of both species where their distribution ranges merge. Both species occupy marginal areas of rugged terrain in the region. Marginality is higher for the Iberian ibex, which also presents a higher tolerance of secondary environmental gradients than the aoudad. Highly suitable areas for each species are secondarily suitable for the other. Reclassified and cross-tabulated habitat suitability maps showing the areas of potential spatial coexistence and differences in ecological traits between both species are provided. The results obtained do not allow inferring resource competition between these species. However, current aoudad expansion could result in it invading the favoured habitats of the ibex. Inadequate hunting policy and monitoring, and increasing climatic resemblance of the study region to the native aoudad areas, due to a strong desertification process, are facilitating a high rate of expansion. We strongly recommend to eradicate or, at least, monitor these exotic populations, and promote active conservation practices, if one wants to preserve the unique natural resources present in this European region. [source] Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessmentDIVERSITY AND DISTRIBUTIONS, Issue 3 2007Simon Ferrier ABSTRACT Generalized dissimilarity modelling (GDM) is a statistical technique for analysing and predicting spatial patterns of turnover in community composition (beta diversity) across large regions. The approach is an extension of matrix regression, designed specifically to accommodate two types of nonlinearity commonly encountered in large-scaled ecological data sets: (1) the curvilinear relationship between increasing ecological distance, and observed compositional dissimilarity, between sites; and (2) the variation in the rate of compositional turnover at different positions along environmental gradients. GDM can be further adapted to accommodate special types of biological and environmental data including, for example, information on phylogenetic relationships between species and information on barriers to dispersal between geographical locations. The approach can be applied to a wide range of assessment activities including visualization of spatial patterns in community composition, constrained environmental classification, distributional modelling of species or community types, survey gap analysis, conservation assessment, and climate-change impact assessment. [source]
| |