Home About us Contact | |||
Environmental Fluctuations (environmental + fluctuation)
Selected AbstractsEnvironmental variance, population growth and evolutionJOURNAL OF ANIMAL ECOLOGY, Issue 1 2010Shripad Tuljapurkar N. Jonzén, T. Pople, K. Knape & M. Skjöld (2009) Stochastic demography and population dynamics in the red kangaroo (Macropus rufus). Journal of Animal Ecology, 79, 109,116. Environmental fluctuations on time scales of one to tens of generations are increasingly recognized as important determinants of population dynamics and microevolution. Jonzén et al. in this issue analyse how the vital rates of red kangaroos depend on annual rainfall, and estimate the elasticities of stochastic growth rate to the means and variances of the vital rates, as well as to the mean and variance of rainfall. Their results demonstrate how ecological and evolutionary studies can benefit from including explicit environmental drivers when modelling populations, and from the use of mean and variance elasticities. [source] Narrowing of exciton linewidth of a quantum dot with increasing temperaturePHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2009Kazuki Bando Abstract Spectral narrowing of exciton luminescence at the elevated temperature was observed in a semiconductor quantum dot (QD). The Fourier spectroscopy was used for the study of decoherence processes of excitons in the single QD. High resolution spectra of the excitons were obtained from the Fourier transform of the decay profile of the exciton decoherence. We found that the exciton linewidth in the QD at low temperature was predominated by spectral diffusion due to carriers trapped at localized sites around the QD and the narrowing of the exciton line was induced by thermally activated escape processes of the carriers from the trap sites. The narrowing of the exciton line also indicates that the exciton decoherence in the semiconductor quantum dots is predominated by environmental fluctuation rather than the exciton-phonon interaction at low temperature. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] THE EVOLUTION OF ENVIRONMENTAL AND GENETIC SEX DETERMINATION IN FLUCTUATING ENVIRONMENTSEVOLUTION, Issue 12 2003Tom J. M. Van Dooren Abstract Twenty years ago, Bulmer and Bull suggested that disruptive selection, produced by environmental fluctuations, can result in an evolutionary transition from environmental sex determination (ESD) to genetic sex determination (GSD). We investigated the feasibility of such a process, using mutation-limited adaptive dynamics and individual-based computer simulations. Our model describes the evolution of a reaction norm for sex determination in a metapopulation setting with partial migration and variation in an environmental variable both within and between local patches. The reaction norm represents the probability of becoming a female as a function of environmental state and was modeled as a sigmoid function with two parameters, one giving the location (i.e., the value of the environmental variable for which an individual has equal chance of becoming either sex) and the other giving the slope of the reaction norm for that environment. The slope can be interpreted as being set by the level of developmental noise in morph determination, with less noise giving a steeper slope and a more switchlike reaction norm. We found convergence stable reaction norms with intermediate to large amounts of developmental noise for conditions characterized by low migration rates, small differential competitive advantages between the sexes over environments, and little variation between individual environments within patches compared to variation between patches. We also considered reaction norms with the slope parameter constrained to a high value, corresponding to little developmental noise. For these we found evolutionary branching in the location parameter and a transition from ESD toward GSD, analogous to the original analysis by Bulmer and Bull. Further evolutionary change, including dominance evolution, produced a polymorphism acting as a GSD system with heterogamety. Our results point to the role of developmental noise in the evolution of sex determination. [source] Population responses to natural and human-mediated disturbances: assessing the vulnerability of the common hippopotamus (Hippopotamus amphibius)AFRICAN JOURNAL OF ECOLOGY, Issue 3 2007Rebecca Lewison Abstract Vulnerable wildlife populations can face a suite of anthropogenic activities that may threaten their persistence. However, human-mediated disturbances are likely to be coincident with natural disturbances that also influence a population. This synergism is often neglected in population projection models. Here I evaluate the effects of natural (rainfall fluctuation) and human disturbances (habitat loss and unregulated hunting) using a multi-matrix environmental state population model for the common hippopotamus (Hippopotamus amphibius). By evaluating each disturbance type (natural and human) alone and then together, I explicitly consider the importance of incorporating realistic environmental variability into population projection models. The model population was most strongly affected by moderate habitat loss, which yielded the highest probability of crossing the risk thresholds over the 60 year time period, although these probabilities were relatively low (,0.31). However, the likelihood of crossing the risk thresholds were two to five times as high when human-mediated and natural disturbances were considered together. When these probabilities were calculated per year of the simulation, the results suggested that even relatively mild human disturbances, when considered in conjunction with realistic natural disturbance, resulted in a high probability (>0.50) of substantial declines within decades. The model highlights the importance of integrating realistic natural disturbances into population models, and suggests that, despite locally abundant populations, protected hippopotamus populations may decline over the next 60 years in response to a combination of environmental fluctuations and human-mediated threats. Résumé Les populations sauvages vulnérables peuvent être confrontées à une suite d'activités humaines qui risquent de menacer leur persistance. Cependant, les perturbations causées par l'homme sont susceptibles de coïncider avec des perturbations naturelles qui influencent aussi une population. Cette synergie est souvent négligée dans les modèles de projection des populations. Ici, j'évalue les effets des perturbations naturelles (fluctuations des chutes de pluie) et humaines (perte d'habitat et chasse non réglementée) en utilisant une chaîne de matrices aléatoires pour l'état environnemental d'une population d'hippopotames (Hippopotamus amphibius). En évaluant chaque type de perturbation (naturelle et humaine) seul et ensemble, je considère explicitement l'importance qu'il y a d'intégrer une variabilité environnementale réaliste dans les modèles de projection des populations. La population modèle était surtout affectée par une perte d'habitat modérée, qui réunissait la plus grande probabilité de dépasser les seuils de risque en une période de 60 ans, même si cette probabilitéétait relativement faible (,0,31). Cependant, la probabilité de franchir les seuils de risque était 2 à 5 fois plus grande lorsque les perturbations d'origine humaine et naturelle étaient considérées ensemble. Lorsque ces probabilités étaient calculées par année, les résultats de la simulation suggéraient que même des perturbations humaines faibles, quand on les considérait en conjonction avec une perturbation naturelle réaliste, résultaient en une forte probabilité (>0,50) de déclin substantiel en quelques décennies. Le modèle souligne l'importance qu'il y a d'intégrer les perturbations naturelles réalistes dans les modèles de population et suggère que, malgré des populations localement abondantes, les populations protégées d'hippopotames peuvent décliner au cours des 60 prochaines années en réaction à une combinaison de fluctuations environnementales et de menaces d'origine humaine. [source] Life table response experiment analysis of the stochastic growth rateJOURNAL OF ECOLOGY, Issue 2 2010Hal Caswell Summary 1.,Life table response experiment (LTRE) analyses decompose treatment effects on a dependent variable (usually, but not necessarily, population growth rate) into contributions from differences in the parameters that determine that variable. 2.,Fixed, random and regression LTRE designs have been applied to plant populations in many contexts. These designs all make use of the derivative of the dependent variable with respect to the parameters, and describe differences as sums of linear approximations. 3.,Here, I extend LTRE methods to analyse treatment effects on the stochastic growth rate log ,s. The problem is challenging because a stochastic model contains two layers of dynamics: the stochastic dynamics of the environment and the response of the vital rates to the state of the environment. I consider the widely used case where the environment is described by a Markov chain. 4.,As the parameters describing the environmental Markov chain do not appear explicitly in the calculation of log ,s, derivatives cannot be calculated. The solution presented here combines derivatives for the vital rates with an alternative (and older) approach, due to Kitagawa and Keyfitz, that calculates contributions in a way analogous to the calculation of main effects in statistical models. 5.,The resulting LTRE analysis decomposes log ,s into contributions from differences in: (i) the stationary distribution of environmental states, (ii) the autocorrelation pattern of the environment, and (iii) the stage-specific vital rate responses within each environmental state. 6.,As an example, the methods are applied to a stage-classified model of the prairie plant Lomatium bradshawii in a stochastic fire environment. 7.,Synthesis. The stochastic growth rate is an important parameter describing the effects of environmental fluctuations on population viability. Like any growth rate, it responds to differences in environmental factors. Without a decomposition analysis there is no way to attribute differences in the stochastic growth rate to particular parts of the life cycle or particular aspects of the stochastic environment. The methods presented here provide such an analysis, extending the LTRE analyses already available for deterministic environments. [source] Demographic factors and genetic variation influence population persistence under environmental changeJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2009YVONNE WILLI Abstract Population persistence has been studied in a conservation context to predict the fate of small or declining populations. Persistence models have explored effects on extinction of random demographic and environmental fluctuations, but in the face of directional environmental change they should also integrate factors affecting whether a population can adapt. Here, we examine the population-size dependence of demographic and genetic factors and their likely contributions to extinction time under scenarios of environmental change. Parameter estimates were derived from experimental populations of the rainforest species, Drosophila birchii, held in the lab for 10 generations at census sizes of 20, 100 and 1000, and later exposed to five generations of heat-knockdown selection. Under a model of directional change in the thermal environment, rapid extinction of populations of size 20 was caused by a combination of low growth rate (r) and high stochasticity in r. Populations of 100 had significantly higher reproductive output, lower stochasticity in r and more additive genetic variance (VA) than populations of 20, but they were predicted to persist less well than the largest size class. Even populations of 1000 persisted only a few hundred generations under realistic estimates of environmental change because of low VA for heat-knockdown resistance. The experimental results document population-size dependence of demographic and adaptability factors. The simulations illustrate a threshold influence of demographic factors on population persistence, while genetic variance has a more elastic impact on persistence under environmental change. [source] The continuity of microevolution and macroevolutionJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2002Andrew M. Simons Abstract A persistent debate in evolutionary biology is one over the continuity of microevolution and macroevolution , whether macroevolutionary trends are governed by the principles of microevolution. The opposition of evolutionary trends over different time scales is taken as evidence that selection is uncoupled over these scales. I argue that the paradox inferred by trend opposition is eliminated by a hierarchical application of the ,geometric-mean fitness' principle, a principle that has been invoked only within the limited context of microevolution in response to environmental variance. This principle implies the elimination of well adapted genotypes , even those with the highest arithmetic mean fitness over a shorter time scale. Contingent on premises concerning the temporal structure of environmental variance, selectivity of extinction, and clade-level heritability, the evolutionary outcome of major environmental change may be viewed as identical in principle to the outcome of minor environmental fluctuations over the short-term. Trend reversals are thus recognized as a fundamental property of selection operating at any phylogenetic level that occur in response to event severities of any magnitude over all time scales. This ,bet-hedging' perspective differs from others in that a specified, single hierarchical selective process is proposed to explain observed hierarchical patterns of extinction. [source] Environmental stability and the distribution of the sexes: insights from life history experiments with the geographic parthenogen Eucypris virens (Crustacea: Ostracoda)OIKOS, Issue 6 2008Maria João Fernandes Martins In many species with mixed reproduction, parthenogens cover a wider geographic range than sexuals. In freshwater ostracods this pattern referred to as geographic parthenogenesis is traditionally explained by ascribing a higher potential for dispersal to parthenogens. For example, the postglacial invasion hypothesis states that the lack of males in northern Europe is caused by the relatively slow range expansion of sexual lineages after deglaciation. An alternative explanation for the contemporary distribution of the sexes is based on spatial and temporal variations in ecological habitat stability. To test this hypothesis, we compared life history data of Eucypris virens individuals originating from bisexual and all-female populations. Populations with males are only found around the Mediterranean, whereas parthenogens cover most of Europe. The animals were hatched and grown in environments mimicking temperature and photoperiod conditions observed in Belgium and Spain. The data confirm the higher potential for population growth in parthenogens. In particular their faster hatching response, possibly higher fecundity (as derived from a difference in body height) and the absence of a cost of males should allow them to out-compete sexuals under stable conditions. However, the comparison of the hatchling accumulation curves of bisexual and all-female populations suggests that sexuals have an advantage in highly unpredictable environments. Indeed, under conditions mimicking those in southern Europe, bisexual populations exhibit a bet-hedging strategy, while parthenogenetic resting eggs hatch on average earlier and more synchronously. Overall, the life history data stress the importance of short term environmental fluctuations for the distribution of the sexes in E. virens, and probably many other inhabitants of ephemeral water bodies. [source] Modelling the role of social behavior in the persistence of the alpine marmot Marmota marmotaOIKOS, Issue 1 2003Volker Grimm A general rule of thumb for biological conservation obtained from simple models of hypothetical species is that for populations with strong environmental noise moderate increases in habitat size or quality do not substantially reduce extinction risk. However, whether this rule also holds for real species with complex behavior, such as social species with breeding units and reproductive suppression, is uncertain. Here we present a population viability analysis of the alpine marmot Marmota marmota, which displays marked social behavior, i.e. it lives in social groups of up to twenty individuals. Our analysis is based on a long-term field study carried out in the Bavarian Alps since 1982. During the first fifteen years of this study, 687 marmots were individually marked and the movements and fate of 98 dispersing marmots were recorded with radio-telemetry. Thus, in contrast to most other viability analyses of spatially structured populations, good data about dispersal exist. A model was constructed which is individual-based, spatially explicit at the scale of clusters of neighbouring territories, and spatially implicit at larger scales. The decisive aspect of marmot life history, winter mortality, is described by logistic regression where mortality is increased by age and the severity of winter, and decreased by the number of subdominant individuals present in a group. Model predictions of group size distribution are in good agreement with the results of the field study. The model shows that the effect of sociality on winter mortality is very effective in buffering environmental harshness and fluctuations. This underpins theoretical results stating that the appropriate measure of the strength of environmental noise is the ratio between the variance of population growth rate and the intrinsic rate of increase. The lessons from our study for biological conservation are that simple, unstructured models may not be sufficient to assess the viability of species with complex behavioral traits, and that even moderate increases in habitat capacity may substantially reduce extinction risk even if environmental fluctuations seem high. [source] Are differences in seed mass among species important in structuring plant communities?OIKOS, Issue 3 2002Evidence from analyses of spatial, temporal variation in dune-annual populations We analyse the population and spatial structures of coastal annual-plant communities, across ten dunes and three years, to explore the role of seed mass in structuring these communities. One suggestion is that annual-plant communities are structured by competition-colonization trade-offs driven by difference among species in seed-allocation strategies, while another perspective is that seed mass influences the ways in which species respond to environmental variation. In support of the competition-colonization trade-off, the two largest-seeded species found on the dunes (Erodium cicutarium and Geranium molle) were negatively associated with the other guild members at the 10-mm scale in 1995, suggesting they locally excluded smaller-seeded species in that year (when population densities were high). In support of the environmental response hypothesis, populations of annual plants declined between 1995 and 1996 on eight of the ten dunes, underscoring the importance of year-to-year environmental fluctuations in determining population sizes. The species that became relatively uncommon also became more aggregated in space, and this effect was most pronounced among the small-seeded species. Thus, small-seeded species may be forced to retreat into refuges when conditions are unfavourable, where reduced frequencies of interspecific contacts may increase their chances of persistence. We also show that small-seeded species sometimes reach much higher population densities than larger-seeded species, consistent with earlier findings, but reason that this abundance/seed mass relationship could have resulted from either a competition-colonization trade-off or from different responses of small- and large-seeded species to environmental variation. We conclude that dune-annual species with contrasting seed masses respond differently to environmental variation, while the competition-colonization trade-off plays a lesser role in community dynamics than previously considered. [source] The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich proteinTHE PLANT JOURNAL, Issue 1 2003N. D. Hagan Summary Sulfur amino acid composition is an important determinant of seed protein quality. A chimeric gene encoding sunflower seed albumin (SSA), one of the most sulfur-rich seed storage proteins identified so far, was introduced into rice (Oryza sativa) in order to modify cysteine and methionine content of the seed. Analysis of a transgenic line expressing SSA at approximately 7% of total seed protein revealed that the mature grain showed little change in the total sulfur amino acid content compared to the parental genotype. This result indicated that the transgenic rice grain was unable to respond to the added demand for cysteine and methionine imposed by the production of SSA. Analysis of the protein composition of the transgenic grain showed changes in the relative levels of the major seed storage proteins, as well as some non-storage proteins, compared to non-transgenic controls. Changes observed at the protein level were concomitant with differences in mRNA accumulation but not always with the level of transcription. The limited sulfur reserves appeared to be re-allocated from endogenous proteins to the new sulfur sink in the transgenic grain. We hypothesize that this response is mediated by a signal transduction pathway that normally modulates seed storage protein composition in response to environmental fluctuations in sulfur availability, via both transcriptional and post-transcriptional control of gene expression. [source] |