Environmental Cues (environmental + cue)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


A Novel Mitogen-Activated Protein Kinase Gene in Maize (Zea mays), ZmMPK3, is Involved in Response to Diverse Environmental Cues

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 5 2010
Jinxiang Wang
In search for components of mitogen-activated protein kinase (MAPK) cascades in maize (Zea mays) involved in response to abscisic acid (ABA) stimulus, a novel MAPK gene, ZmMPK3, from ABA-treated maize leaves cDNA was isolated and characterized. The full length of the ZmMPK3 gene is 1 520 bp and encodes a 376 amino acid protein with a predicted molecular mass of 43.5 kD and a pI of 5.83. ZmMPK3 contains all 11 MAPK conserved subdomains and the phosphorylation motif TEY. Amino acid sequence alignment revealed that ZmMPK3 shared high identity with group-A MAPK in plants. A time course (30,360 min) experiment using a variety of signal molecules and stresses revealed that the transcripts level of ZmMPK3 accumulated markedly and rapidly when maize seedlings were subjected to exogenous signaling molecules: ABA, H2O2, jasmonic acid and salicylic acid, various abiotic stimuli such as cold, drought, ultraviolet light, salinity, heavy metal and mechanical wounding. Its transcription was also found to be tissue-specific regulated. Here, we show that ABA and H2O2 induced a significant increase in the ZmMPK3 activity using immunoprecipitation and in-gel kinase assay. Furthermore, the results showed that the ZmMPK3 protein is localized mainly to the nucleus. These results suggest that the ZmMPK3 may play an important role in response to environmental stresses. [source]


Environmental Cues, Alcohol Seeking, and Consumption in Baboons: Effects of Response Requirement and Duration of Alcohol Abstinence

ALCOHOLISM, Issue 12 2006
Elise M. Weerts
Background: Environmental stimuli (cues) that have been paired with alcohol drinking may evoke classically conditioned states that in turn influence alcohol consumption and relapse to heavy drinking. Animal models using chained schedules of alcohol reinforcement may be useful for examining such complex interactions. Methods: Alcohol drinking was established in 4 baboons. A sequence of lights and tones was presented during daily 3-hour sessions. First, cues were presented alone and no programmed contingencies were in effect. Second, cues were paired with 3 linked components consisting of different behavioral contingencies leading to and concluding with access to alcohol for self-administration in the last component (i.e., a chained schedule of alcohol reinforcement). Third, the effects of withholding alcohol access (i.e., forced abstinence) and increasing the number of lever responses required per drink were evaluated. Results: Cues paired with a chained schedule of alcohol reinforcement engendered behaviors that brought baboons into contact with alcohol-related cues and occasioned operant responding that facilitated access to alcohol (alcohol seeking) during components that preceded alcohol access. Increasing the response requirement for each drink decreased the number of drinks and volume of alcohol consumed, but did not alter alcohol seeking. On the first session after 14 days of alcohol abstinence, latency to complete the operant requirement that produced alcohol access was decreased while both alcohol self-administration and volume of alcohol consumed were increased. Conclusions: Alcohol self-administration and consumption were sensitive to increases in response requirement and duration of alcohol abstinence, while seeking was only enhanced by duration of alcohol abstinence. This animal model may be useful to further examine the interactions between environmental cues and behaviors associated with seeking and consumption of alcohol and to evaluate the efficacy of potential alcohol treatment drugs on these behaviors. [source]


Idea Habitats: How the Prevalence of Environmental Cues Influences the Success of Ideas

COGNITIVE SCIENCE - A MULTIDISCIPLINARY JOURNAL, Issue 2 2005
Jonah A. Berger
Abstract We investigate 1 factor that influences the success of ideas or cultural representations by proposing that they have a habitat, that is, a set of environmental cues that encourages people to recall and transmit them. We test 2 hypotheses: (a) fluctuation: the success of an idea will vary over time with fluctuations in its habitat, and (b) competition: ideas with more prevalent habitats will be more successful. Four studies use subject ratings and data from newspapers to provide correlational support for our 2 hypotheses, with a negative factoid, positive rumor, catchphrases, and variants of a proverb. Three additional experimental studies manipulate the topic of actual conversations and find empirical support for our theory, with catchphrases, proverbs, and slang. The discussion examines how habitat prevalence applies to a more extensive class of ideas and suggests how habitats may influence the process by which ideas evolve. [source]


Oviposition decreased in response to enriched water: a field study of the pitcher-plant mosquito, Wyeomyia smithii

ECOLOGICAL ENTOMOLOGY, Issue 1 2007
DAVID HOEKMAN
Abstract 1.,Environmental cues are known to influence oviposition behaviour in mosquitoes, with important consequences for larval survival and insect population dynamics. Enriched microhabitats have been shown to be preferred oviposition sites. 2.,In a field experiment designed to determine whether ovipositing mosquitoes are sensitive to different levels of nutrient enrichment, new pitcher-plant (Sarracenia purpurea) leaves were opened and enriched with 0, 2, or 20 dead ants, and the number of pitcher-plant mosquito (Wyeomyia smithii) larvae resulting from subsequent oviposition were measured. 3.,Oviposition rates were higher in leaves with low levels of enrichment (0 and 2 ants per leaf), although larval development was enhanced at the highest enrichment level. 4.,Results suggest that, although these mosquito larvae are nutrient limited, ovipositing females preferentially avoid highly enriched leaves. This counterintuitive result may be due to low oxygen concentrations or a masked cue in enriched leaves, and contrasts with other oviposition studies. [source]


The Use of Bloodhounds in Determining the Impact of Genetics and the Environment on the Expression of Human Odortype

JOURNAL OF FORENSIC SCIENCES, Issue 5 2006
Lisa M. Harvey Ph.D.
ABSTRACT: Bloodhounds are used to trail fleeing felons and missing persons. In order to start a trail, the dog must be presented with a person's scent. There are many hypotheses on what a bloodhound smells while trailing. The present study attempts to identify whether human scent is genetic, and if it is influenced by one's environment. Bloodhounds trained in human scent discrimination were used to differentiate between monozygotic twins, related and nonrelated persons, living together and apart. The first test required the dogs to run blind trails after being presented with the scent of one person in the pair, while the opposite person was hidden. The second test allowed the dogs to trail one person in the pair after both people were hidden. Results appear to demonstrate that bloodhounds rely heavily on genetic cues when differentiating between people. Environmental cues do not appear to significantly aid the bloodhound in scent discrimination. [source]


Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm

MOLECULAR MICROBIOLOGY, Issue 4 2003
F. Repoila
Summary Adaptation to the changing environment requires both the integration of external signals and the co-ordination of internal responses. Around 50 non-coding small RNAs (sRNAs) have been described in Escherichia coli; the levels of many of these vary with changing environmental conditions. This suggests that they play a role in cell adaptation. In this review, we use the regulation of RpoS (,38) translation as a paradigm of sRNA-mediated response to environmental conditions; rpoS is currently the only known gene regulated post-transcriptionally by at least three sRNAs. DsrA and RprA stimulate RpoS translation in response to low temperature and cell surface stress, respectively, whereas OxyS represses RpoS translation in response to oxidative shock. However, in addition to regulating RpoS translation, DsrA represses the translation of HNS (a global regulator of gene expression), whereas OxyS represses the translation of FhlA (a transcriptional activator), allowing the cell to co-ordinate different pathways involved in cell adaptation. Environmental cues affect the synthesis and stability of specific sRNAs, resulting in specific sRNA-dependent translational control. [source]


Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida

ENVIRONMENTAL MICROBIOLOGY, Issue 7 2007
Miguel A. Matilla
Summary Pseudomonas putida KT2440 is unable to swarm at its common temperature of growth in the laboratory (30C) but exhibits surface motility similar to swarming patterns in other Pseudomonas between 18C and 28C. These motile cells show differentiation, consisting on elongation and the presence of surface appendages. Analysis of a collection of mutants to define the molecular determinants of this type of surface movement in KT2440 shows that while type IV pili and lipopolysaccharide O-antigen are requisites flagella are not. Although surface motility of flagellar mutants was macroscopically undistinguishable from that of the wild type, microscopy analysis revealed that these mutants move using a distinct mechanism to that of the wild-type strain. Mutants either in the siderophore pyoverdine (ppsD) or in the FpvA siderophore receptor were also unable to spread on surfaces. Motility in the ppsD strain was totally restored with pyoverdine and partially with the wild-type ppsD allele. Phenotype of the fpvA strain was not complemented by this siderophore. We discuss that iron influences surface motility and that it can be an environmental cue for swarming-like movement in P. putida. This study constitutes the first report assigning an important role to pyoverdine iron acquisition in en masse bacterial surface movement. [source]


Use of monoclonal antibodies to quantify the dynamics of ,-galactosidase and endo-1,4-,-glucanase production by Trichoderma hamatum during saprotrophic growth and sporulation in peat

ENVIRONMENTAL MICROBIOLOGY, Issue 5 2005
Christopher R. Thornton
Summary Trichoderma species are ubiquitous soil and peat-borne saprotrophs that have received enormous scientific interest as biocontrol agents of plant diseases caused by destructive root pathogens. Mechanisms of biocontrol such as antibiosis and hyperparasitism are well documented and the biochemistry and molecular genetics of these processes defined. An aspect of biocontrol that has received little attention is the ability of Trichoderma species to compete for nutrients in their natural environments. Trichoderma species are efficient producers of polysaccharide-degrading enzymes that enable them to colonize organic matter thereby preventing the saprotrophic spread of plant pathogens. This study details the use of monoclonal antibodies (mAbs) to quantify the production of two enzymes implicated in the saprotrophic growth of Trichoderma species in peat. Using mAbs specific to the hemicellulase enzyme ,-galactosidase (AGL) and the cellulase enzyme endo-1,4-,-glucanase (EG), the relationship between the saprotrophic growth dynamics of a biocontrol strain of Trichoderma hamatum and the concomitant production of these enzymes in peat-based microcosms was studied. Enzyme activity assays and enzyme protein concentrations derived by enzyme-linked immunosorbent assay (ELISA) established the precision and sensitivity of mAb-based assays in quantifying enzyme production during active growth of the fungus. Trends in enzyme activities and protein concentrations were similar for both enzymes, during a 21-day sampling period in which active growth and sporulation of the fungus in peat was quantified using an independent mAb-based assay. There was a sharp increase in active biomass of T. hamatum 3 days after inoculation of microcosms with phialoconidia. After 3 days there was a rapid decline in active biomass which coincided with sporulation of the fungus. A similar trend was witnessed with EG activities and concentrations. This showed that EG production related directly to active growth of the fungus. The trend was not found, however, with AGL. There was a rapid increase in enzyme activities and protein concentrations on day 3, after which they remained static. The reason for the maintenance of elevated AGL probably resulted from secretion of the enzyme from conidia and chlamydospores. ELISA, immunofluoresence and immunogold electron microscopy studies of these cells showed that the enzyme is localized within the cytoplasm and is secreted extracellularly into the surrounding environment. It is postulated that release of oligosaccharides from polymeric hemicellulose by the constitutive spore-bound enzyme leads to AGL induction and could act as an environmental cue for spore germination. [source]


The dynamics of developmental system drift in the gene network underlying wing polyphenism in ants: a mathematical model

EVOLUTION AND DEVELOPMENT, Issue 3 2008
Marcos Nahmad
SUMMARY Understanding the complex interaction between genotype and phenotype is a major challenge of Evolutionary Developmental Biology. One important facet of this complex interaction has been called "Developmental System Drift" (DSD). DSD occurs when a similar phenotype, which is homologous across a group of related species, is produced by different genes or gene expression patterns in each of these related species. We constructed a mathematical model to explore the developmental and evolutionary dynamics of DSD in the gene network underlying wing polyphenism in ants. Wing polyphenism in ants is the ability of an embryo to develop into a winged queen or a wingless worker in response to an environmental cue. Although wing polyphenism is homologous across all ants, the gene network that underlies wing polyphenism has evolved. In winged ant castes, our simulations reproduced the conserved gene expression patterns observed in the network that controls wing development in holometabolous insects. In wingless ant castes, we simulated the suppression of wings by interrupting (up- or downregulating) the expression of genes in the network. Our simulations uncovered the existence of four groups of genes that have similar effects on target gene expression and growth. Although each group is comprised of genes occupying different positions in the network, their interruption produces vestigial discs that are similar in size and shape. The implications of our results for understanding the origin, evolution, and dissociation of the gene network underlying wing polyphenism in ants are discussed. [source]


Hormones as epigenetic signals in developmental programming

EXPERIMENTAL PHYSIOLOGY, Issue 6 2009
Abigail L. Fowden
In mammals, including man, epidemiological and experimental studies have shown that a range of environmental factors acting during critical periods of early development can alter adult phenotype. Hormones have an important role in these epigenetic modifications and can signal the type, severity and duration of the environmental cue to the developing feto-placental tissues. They affect development of these tissues both directly and indirectly by changes in placental phenotype. They act to alter gene expression, hence the protein abundance in a wide range of different tissues, which has functional consequences for many physiological systems both before and after birth. By producing an epigenome specific to the prevailing condition in utero, hormones act as epigenetic signals in developmental programming, with important implications for adult health and disease. This review examines the role of hormones as epigenetic signals by considering their responses to environmental cues, their effects on phenotypical development and the molecular mechanisms by which they programme feto-placental development, with particular emphasis on the glucocorticoids. [source]


The onset of downstream movement of juvenile Atlantic salmon, Salmo salar L., in a chalk stream

FISHERIES MANAGEMENT & ECOLOGY, Issue 2 2002
W. D. RILEY
The downstream movements of wild Atlantic salmon, Salmo salar L., from their established feeding territories in the River Itchen, Hampshire, UK, were logged continuously over an 11-month period using a passive integrated transponder (PIT) antenna system. The time of these movements was then related to a number of monitored and calculated environmental parameters. Initial downstream movement of smolts in April was correlated with the onset of darkness, at which time salmon moved from their established feeding territories alone. No relationship was found between the number of smolts migrating and river flow or maximum daily water temperature. The timing of downstream movement of parr between October and March was random with regard to sunset and time of maximum daily water temperature, suggesting the environmental cue that initiates movement may be different outside the spring smolt period. [source]


Timing of spawning and glochidial release in Scottish freshwater pearl mussel (Margaritifera margaritifera) populations

FRESHWATER BIOLOGY, Issue 12 2003
Lee C. Hastie
Summary 1. The timing of reproduction was investigated in six Scottish freshwater pearl mussel populations from 1993 to 2002. Gravid females were examined and the release of mussel larvae (glochidia) was monitored. 2. Annual spawning (oviposition) and spat (glochidial release) events occurred during June to July and June to September, respectively. 3. Between-river differences in timing seem to be related to water temperature. Mussels in the warmest rivers tend to spawn and spat first, and vice-versa. 4. Thermal variations also seem to influence the timing of reproduction within rivers, which can be delayed by several weeks during cold years. At least 3000-days occur between annual episodes of glochidial release. 5. The timing of spawning is determined gradually, probably by a thermal summation effect. 6. The release stage occurs as a sudden, synchronised event, with most of the glochidia spat over 1,2 days, indicating that it is triggered by an environmental cue. Sudden changes in water temperature and/or river level often result in spats, and the underlying mechanism may be respiratory. [source]


Evolution of flowering in response to day length: Flipping the CONSTANS switch

BIOESSAYS, Issue 9 2003
Gordon G. Simpson
Day length provides an important environmental cue by signalling conditions favourable for flowering. While Arabidopsis promotes flowering in response to long days, rice promotes flowering in response to short days. Despite this difference, a recent paper reveals that the network controlling this response is highly conserved in these distantly related plants, only the activity of one component is reversed.1 This reveals how an important developmental process can be diversified for adaptation by using the same set of genes, but regulating them differently. BioEssays 25:829,832, 2003. 2003 Wiley Periodicals, Inc. [source]


Experience-dependent plasticity in hypocretin/orexin neurones: re-setting arousal threshold

ACTA PHYSIOLOGICA, Issue 3 2010
X.-B. Gao
Abstract The neuropeptide hypocretin is synthesized exclusively in the lateral hypothalamus and participates in many brain functions critical for animal survival, particularly in the promotion and maintenance of arousal in animals , a core process in animal behaviours. Consistent with its arousal-promoting role in animals, the neurones synthesizing hypocretin receive extensive innervations encoding physiological, psychological and environmental cues and send final outputs to key arousal-promoting brain areas. The activity in hypocretin neurones fluctuates and correlates with the behavioural state of animals and intensive activity has been detected in hypocretin neurones during wakefulness, foraging for food and craving for addictive drugs. Therefore, it is likely that hypocretin neurones undergo experience-dependent changes resulting from intensive activations by stimuli encoding changes in the internal and external environments. This review summarizes the most recent evidence supporting experience-dependent plasticity in hypocretin neurones. Current data suggest that nutritional and behavioural factors lead to synaptic plasticity and re-organization of synaptic architecture in hypocretin neurones. This may be the substrate of enhanced levels of arousal resulting from behavioural changes in animals and may help to explain the mechanisms underlying the changes in arousal levels induced by physiological, psychological and environmental factors. [source]


The effect of combined simulated microgravity and microgrooved surface topography on fibroblasts

CYTOSKELETON, Issue 3 2007
W. A. Loesberg
Abstract This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 0.5 ,m, width: 1, 2, 5, and 10 ,m), which were subjected to simulated microgravity. The aim of the study was to clarify which of these parameters was more dominant to determine cell behaviour. Morphological characteristics were investigated using scanning electron microscopy and fluorescence microscopy in order to obtain qualitative information on cell alignment and area. Confocal laser scanning microscopy visualised distribution of actin filaments and focal adhesion points. Finally, expression of collagen type I, fibronectin, and ,1- and ,1-integrin were investigated by PCR. Microscopy and image analysis showed that the fibroblasts aligned along the groove direction on all textured surfaces. On the smooth substrata, cells had spread out in a random fashion. The alignment of cells cultured on grooved surfaces decreased under simulated microgravity, especially after 24 h of culturing. Cell surface area on grooved substrata were significantly smaller than on smooth substrata, but simulated microgravity on the grooved groups resulted in an enlargement of cell area. ANOVA was performed on all main parameters: topography, gravity force, and time. In this analysis, all parameters proved significant. In addition, gene levels were reduced by microgravity particularly those of ,1-integrin and fibronectin. From our data it is concluded that the fibroblasts primarily adjust their shape according to morphological environmental cues like substratum surface whilst a secondary, but significant, role is played by microgravity conditions. Cell Motil. Cytoskeleton 2007. 2007 Wiley-Liss, Inc. [source]


The effect of combined hypergravity and microgrooved surface topography on the behaviour of fibroblasts

CYTOSKELETON, Issue 7 2006
W. A. Loesberg
Abstract This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and microgrooved substrata (groove depth: 1 ,m, width: 1, 2, 5, 10 ,m), which undergo artificial hypergravity by centrifugation (10, 24 and 50 g; or 1 g control). The aim of the study was to clarify which of these parameters was more important to determine cell behaviour. Morphological characteristics were investigated using scanning electron microscopy and fluorescence microscopy in order to obtain qualitative information on cell spreading and alignment. Confocal laser scanning microscopy visualised distribution of actin filaments and vinculin anchoring points through immunostaining. Finally, expression of collagen type I, fibronectin, and ,1 - and ,1 -integrin were investigated by PCR. Microscopy and image analysis showed that the fibroblasts aligned along the groove direction on all textured surfaces. On the smooth substrata (control), cells spread out in a random fashion. The alignment of cells cultured on grooved surfaces increased with higher g-forces until a peak value at 25 g. An ANOVA was performed on the data, for all main parameters: topography, gravity force, and time. In this analysis, all parameters proved significant. In addition, most gene levels were reduced by hypergravity. Still, collagen type 1 and fibronectin are seemingly unaffected by time or force. From our data it is concluded that the fibroblasts primarily adjust their shape according to morphological environmental cues like substratum surface whilst a secondary, but significant, role is played by hypergravity forces. Cell Motil. Cytoskeleton 2006. 2006 Wiley-Liss, Inc. [source]


Monastrol, a prototype anti-cancer drug that inhibits a mitotic kinesin, induces rapid bursts of axonal outgrowth from cultured postmitotic neurons

CYTOSKELETON, Issue 1 2004
Saad A. Haque
Abstract Terminally postmitotic neurons continue to express many of the kinesin-related proteins known to configure microtubules during mitosis. Drugs that inhibit these kinesins are being developed as anti-cancer agents with the hope that they will inhibit proliferation of tumor cells without having adverse effects on the nervous system. The prototype, termed monastrol, inhibits the kinesin known as Eg5, which is essential for maintaining separation of the half-spindles. Eg5 is also highly expressed in neurons, particularly during development. Exposure of cultured sympathetic neurons to monastrol for a few hours increased both the number and the growth rate of the axons. With additional time, the overall lengths of the axons were indistinguishable from controls. Sensory neurons showed a similar short-term increase in axonal growth rate. However, prolonged exposure resulted in shorter axons, suggesting that sensory neurons may be more sensitive to toxic effects of the drug. Nevertheless, the overall health of the cultures was still far more robust than cultures treated with taxol, a drug commonly used for anti-cancer therapy. On the basis of these results, we conclude that Eg5 normally generates forces that oppose axonal growth, presumably by partially suppressing the forward advance of microtubules. We speculate that local regulation of Eg5 could be a means by which neurons coordinate rapid bursts of axonal growth with appropriate environmental cues. The comparatively modest toxic effects on the neurons over time are a hopeful sign for clinicians interested in using anti-Eg5 drugs for cancer therapy. Cell Motil. Cytoskeleton 58:10,16, 2004. 2004 Wiley-Liss, Inc. [source]


Epigenetic regulation in neural stem cell differentiation

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2010
Berry Juliandi
The central nervous system (CNS) is composed of three major cell types , neurons, astrocytes, and oligodendrocytes , which differentiate from common multipotent neural stem cells (NSCs). This differentiation process is regulated spatiotemporally during the course of mammalian development. It is becoming apparent that epigenetic regulation is an important cell-intrinsic program, which can interact with transcription factors and environmental cues to modulate the differentiation of NSCs. This knowledge is important given the potential of NSCs to produce specific CNS cell types that will be beneficial for clinical applications. Here we review recent findings that address molecular mechanisms of epigenetic and transcription factor-mediated regulation that specify NSC fate during CNS development, with a particular focus on the developing mammalian forebrain. [source]


Human and pig SRY 5, flanking sequences can direct reporter transgene expression to the genital ridge and to migrating neural crest cells

DEVELOPMENTAL DYNAMICS, Issue 3 2006
Alexandre Boyer
Abstract Mechanisms for sex determination vary greatly between animal groups, and include chromosome dosage and haploid,diploid mechanisms as seen in insects, temperature and environmental cues as seen in fish and reptiles, and gene-based mechanisms as seen in birds and mammals. In eutherian mammals, sex determination is genetic, and SRY is the Y chromosome located gene representing the dominant testes determining factor. How SRY took over this function from ancestral mechanisms is not known, nor is it known what those ancestral mechanisms were. What is known is that SRY is haploid and thus poorly protected from mutations, and consequently is poorly conserved between mammalian species. To functionally compare SRY promoter sequences, we have generated transgenic mice with fluorescent reporter genes under the control of various lengths of human and pig SRY 5, flanking sequences. Human SRY 5, flanking sequences (5 Kb) supported reporter transgene expression within the genital ridge of male embryos at the time of sex determination and also supported expression within migrating truncal neural crest cells of both male and female embryos. The 4.6 Kb of pig SRY 5, flanking sequences supported reporter transgene expression within the male genital ridge but not within the neural crest; however, 2.6 Kb and 1.6 Kb of pig SRY 5, flanking sequences retained male genital ridge expression and now supported extensive expression within cells of the neural crest in embryos of both sexes. When 2 Kb of mouse SRY 5, flanking sequences (,3 to ,1 Kb) were placed in front of the 1.6 Kb of pig SRY 5, flanking sequences and this transgene was introduced into mice, reporter transgene expression within the male genital ridge was retained but neural crest expression was lost. These observations suggest that SRY 5, flanking sequences from at least two mammalian species contain elements that can support transgene expression within cells of the migrating neural crest and that additional SRY 5, flanking sequences can extinguish this expression. Developmental Dynamics 235:623,632, 2006. 2006 Wiley-Liss, Inc. [source]


Expression of chondrogenic potential of mouse trunk neural crest cells by FGF2 treatment

DEVELOPMENTAL DYNAMICS, Issue 2 2006
Atsushi Ido
Abstract There is a significant difference between the developmental patterns of cranial and trunk neural crest cells in the amniote. Thus, whereas cranial neural crest cells generate bone and cartilage, trunk neural crest cells do not contribute to skeletal derivatives. We examined whether mouse trunk neural crest cells can undergo chondrogenesis to analyze how the difference between the developmental patterns of cranial and trunk neural crest cells arises. Our present data demonstrate that mouse trunk neural crest cells have chondrogenic potential and that fibroblast growth factor (FGF) 2 is an inducing factor for their chondrogenesis in vitro. FGF2 altered the expression patterns of Hox9 genes and Id2, a cranial neural crest cell marker. These results suggest that environmental cues may play essential roles in generating the difference between developmental patterns of cranial and trunk neural crest cells. Developmental Dynamics 235:361,367, 2006. 2005 Wiley-Liss, Inc. [source]


Binding characteristics of chondroitin sulfate proteoglycans and laminin-1, and correlative neurite outgrowth behaviors in a standard tissue culture choice assay

DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2002
Diane M. Snow
Abstract Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum-bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin-1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth-promoting to outgrowth-inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones. 2002 Wiley Periodicals, Inc. J Neurobiol 51: 285,301, 2002 [source]


Reproduction in three species of rainbowfish (Melanotaeniidae) from rainforest streams in northern Queensland, Australia

ECOLOGY OF FRESHWATER FISH, Issue 2 2001
B. J. Pusey
Abstract , The reproductive biology of three species of rainbowfish (Melanotaeniidae) in northeastern Australian rainforest streams was investigated. Two species, Melanotaenia eachamensis and Cairnsichthys rhombosomoides are endemic to the area, whereas the third, M. splendida splendida, is more widespread. The species were all highly fecund, producing many hundreds of eggs between 1.10 and 1.24 mm in diameter. Melanotaenia eachamensis was the most fecund, produced the largest eggs of the three species, and consequently exhibited the greatest maternal investment (as measured by gonadosomatic index). The majority of reproductive effort occurred during the dry season, although reproductively active fish were present year-round for each of the species, but particularly so for M. s. splendida and C. rhombosomoides. No evidence for a role by temperature or photoperiod as environmental cues for reproduction was found, and it was suggested that gonad development was strongly tied to somatic growth. The concentration of reproduction to the dry season ensures that larvae are produced during a period of relatively stable and benign physical conditions. Comparison of temporal changes in gonadosomatic index values suggest that the spawning season of M. eachamensis, which occurs in high-elevation streams, is more restricted and commences about 1 month earlier than either other species. A similar phenology was observed for the M. s. splendida population found at high elevation and highlights the potential for spatial differences in stream productivity to influence life history., [source]


PRECLINICAL STUDY: Conditioned cues and yohimbine induce reinstatement of beer and near-beer seeking in Long-Evans rats

ADDICTION BIOLOGY, Issue 2 2009
Jemma K. Richards
ABSTRACT Alcohol use disorders (AUDs) impact millions of individuals, yet there are few effective treatments. One major problem in treating AUDs is the high rate of relapse to drinking often induced by stress and/or anxiety states. Although beer accounts for over 81% of all alcohol consumed in hazardous amounts in the United States, the use of beer in pre-clinical research has been limited. It has been shown that rats will self-administer beer and near-beer using a standard operant self-administration paradigm; however, there have been few studies examining reinstatement of beer and near-beer seeking. We have determined that reward-associated cues and/or yohimbine will induce reinstatement of beer and near-beer seeking in a similar manner to that seen for 10% ethanol and sucrose seeking using standard operant self-administration and reinstatement paradigms. We show that rats will self-administer beer, near-beer and 4.5% ethanol using an operant self-administration paradigm and both conditioned cues, and yohimbine will induce reinstatement of beer, near-beer and 4.5% ethanol seeking in previously extinguished animals. This demonstrates that both environmental cues and yohimbine-stress will reinstate beer and near-beer seeking, as previously shown for both 10% ethanol and sucrose seeking. [source]


Cerebellar contribution to spatial event processing: do spatial procedures contribute to formation of spatial declarative knowledge?

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2003
L. Mandolesi
Abstract Spatial knowledge of an environment involves two distinct competencies: declarative spatial knowledge, linked to where environmental cues are and where the subject is with respect to the cues, and, at the same time, procedural spatial knowledge, linked to how to move into the environment. It has been previously demonstrated that hemicerebellectomized (HCbed) rats are impaired in developing efficient exploration strategies, but not in building spatial maps or in utilizing localizing cues. The aim of the present study was to analyse the relationships between spatial procedural and declarative knowledge by using the open field test. HCbed rats have been tested in two different protocols of the open field task. The results indicate that HCbed animals succeeded in moving inside the arena, in contacting the objects and in habituating to the new environment. However, HCbed animals did not react to environmental changes, when their impaired explorative pattern was inappropriate to the environment, suggesting that they were not able to represent a new environment because they were not able to explore it appropriately. Nevertheless, when their altered procedures were favoured by object arrangement, they detected environmental changes as efficiently as did normal rats. This finding suggests that no declarative spatial learning is possible without appropriate procedural spatial learning. [source]


New genomic avenues in behavioural neuroendocrinology ,

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2002
S. L. Lightman
Abstract Neuroendocrine systems play a key role not only in the maintenance of whole-body homeostasis but also as the link between behavioural, endocrine and autonomic responses to environmental stimuli. It is becoming increasingly clear that neuroendocrine regulatory mechanisms are under the control of a combination of factors including genetic background, environment and early-life programming. Patterns of gene expression are increasingly being used to provide information on the genotypes associated with particular behaviours, and modulation of specific parts of the genome allow investigation of the contribution of particular genes. The sequencing of the genome provides a unique opportunity to elucidate the genetic contribution to neuroendocrine and behavioural processes, and to investigate the interactions between genetic and environmental factors. Although drugs can be used to activate or inhibit neurotransmitters and receptors, they lack specificity. New technologies now permit the activation or inactivation of both neurotransmitters and receptors in specific areas of the brain for defined periods, including crucially important developmental windows when activation appears to have long-term consequences. The future challenges are to define the critical mechanisms through which the genetic constitution of an individual human or experimental animal interacts with environmental cues to result in altered physiological or even pathological behaviour and endocrine function. [source]


Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2002
Iacopo Cangioli
Abstract The basolateral amygdala (BLA) is involved in learning that certain environmental cues predict threatening events. Several studies have shown that manipulation of neurotransmission within the BLA affects the expression of memory after fear conditioning. We previously demonstrated that blockade of histaminergic H3 receptors decreased spontaneous release of acetylcholine (ACh) from the BLA of freely moving rats, and impaired retention of fear memory. In the present study, we examined the effect of activating H3 receptors within the BLA on both ACh release and expression of fear memory. Using the microdialysis technique in freely moving rats, we found that the histaminergic H3 agonists R-,-methylhistamine (RAMH) and immepip, directly administered into the BLA, augmented spontaneous release of ACh in a similar manner. Levels of ACh returned to baseline on perfusion with control medium. Rats receiving intra-BLA, bilateral injections of the H3 agonists at doses similar to those enhancing ACh spontaneous release, immediately after contextual fear conditioning, showed stronger memory for the context,footshock association, as demonstrated by longer freezing assessed at retention testing performed 72 h later. Post-training, bilateral injections of 15 ng oxotremorine also had a similar effect on memory retention, supporting the involvement of the cholinergic system. Thus, our results further support a physiological role for synaptically released histamine, that in addition to affecting cholinergic transmission in the amygdala, modulates consolidation of fear memories [source]


PLASTICITY TO LIGHT CUES AND RESOURCES IN ARABIDOPSIS THALIANA: TESTING FOR ADAPTIVE VALUE AND COSTS

EVOLUTION, Issue 6 2000
Lisa A. Dorn
Abstract Plants shaded by neighbors or overhead foliage experience both a reduction in the ratio of red to far red light (R:FR), a specific cue perceived by phytochrome, and reduced photosynthetically active radiation (PAR), an essential resource. We tested the adaptive value of plasticity to crowding and to the cue and resource components of foliage shade in the annual plant Arabidopsis thaliana by exposing 36 inbred families from four natural populations to four experimental treatments: (1) high density, full sun; (2) low density, full sun; (3) low density, neutral shade; and (4) low density, low R:FR-simulated foliage shade. Genotypic selection analysis within each treatment revealed strong environmental differences in selection on plastic life-history traits. We used specific contrasts to measure plasticity to density and foliage shade, to partition responses to foliage shade into phytochrome-mediated responses to the R:FR cue and responses to PAR, and to test whether plasticity was adaptive (i.e., in the same direction as selection in each environment). Contrary to expectation, we found no evidence for adaptive plasticity to density. However, we observed both adaptive and maladaptive responses to foliage shade. In general, phytochrome-mediated plasticity to the R:FR cue of foliage shade was adaptive and counteracted maladaptive growth responses to reduced PAR. These results support the prediction that active developmental responses to environmental cues are more likely to be adaptive than are passive resource-mediated responses. Multiple regression analysis detected a few costs of adaptive plasticity and adaptive homeostasis, but such costs were infrequent and their expression depended on the environment. Thus, costs of plasticity may occasionally constrain the evolution of adaptive responses to foliage shade in Arabidopsis, but this constraint may differ among environments and is far from ubiquitous. [source]


Phenotypic plasticity in insects: the effects of substrate color on the coloration of two ground-hopper species

EVOLUTION AND DEVELOPMENT, Issue 3 2008
Axel Hochkirch
SUMMARY The question of how phenotypic variation is maintained within populations has long been a central issue in evolutionary biology. Most of these studies focused on the maintenance of genetic variability, but the phenotype of organisms may also be influenced by environmental cues experienced during ontogeny. Color polymorphism has received particular attention in evolutionary studies as it has strong fitness consequences. However, if body coloration is influenced by the environment, any conclusions on evolutionary consequences of fitness trade-offs can be misleading. Here we present data from a laboratory experiment on the influence of substrate color on three aspects of the coloration of two ground-hopper species, Tetrix subulata and Tetrix ceperoi. We reared hatchlings either on dark or on light substrates, using a split-brood design. Although the type of pronotal pattern changed mainly in response to nymphal development, the basic color was strongly influenced by the substrate color. In both species, black and dark olive color morphs were found more frequently on the dark substrate, whereas the gray color morph dominated on the light substrate. These findings have considerable implications for our understanding of color morph evolution as they show that color polymorphism may not only be maintained by natural selection acting on discrete color morphs, but also by phenotypic plasticity, which enables organisms to adjust to the environmental conditions experienced during ontogeny. This facultative morphology is opposing to the prevailing view of color morph adaptation, which assumes a purely genetic determination and co-evolution of discrete color morphs with life history traits. [source]


Hormones as epigenetic signals in developmental programming

EXPERIMENTAL PHYSIOLOGY, Issue 6 2009
Abigail L. Fowden
In mammals, including man, epidemiological and experimental studies have shown that a range of environmental factors acting during critical periods of early development can alter adult phenotype. Hormones have an important role in these epigenetic modifications and can signal the type, severity and duration of the environmental cue to the developing feto-placental tissues. They affect development of these tissues both directly and indirectly by changes in placental phenotype. They act to alter gene expression, hence the protein abundance in a wide range of different tissues, which has functional consequences for many physiological systems both before and after birth. By producing an epigenome specific to the prevailing condition in utero, hormones act as epigenetic signals in developmental programming, with important implications for adult health and disease. This review examines the role of hormones as epigenetic signals by considering their responses to environmental cues, their effects on phenotypical development and the molecular mechanisms by which they programme feto-placental development, with particular emphasis on the glucocorticoids. [source]


Schooling and migration of large pelagic fishes relative to environmental cues

FISHERIES OCEANOGRAPHY, Issue 2 2000
Robert Humston
A kinesis model driven by high-resolution sea surface temperature maps is used to simulate Atlantic bluefin tuna movements in the Gulf of Maine during summer months. Simulations showed that individuals concentrated in areas of thermal preference. Results are compared to empirical distribution maps of bluefin tuna schools determined from aerial overflights of the stock during the same time periods. Simulations and empirical observations showed similar bluefin tuna distributions along fronts, although interannual variations in temperature ranges occupied suggest that additional foraging factors are involved. Performance of the model is further tested by simulating the relatively large-scale annual north,south migrations of bluefin tuna that followed a preferred thermal regime. Despite the model's relatively simple structure, results suggest that kinesis is an effective mechanism for describing movements of large pelagic fish in the expansive ocean environment. [source]