Environmental Biotechnology (environmental + biotechnology)

Distribution by Scientific Domains


Selected Abstracts


Environmental biotechnology: Challenges and opportunities for chemical engineers

AICHE JOURNAL, Issue 3 2005
Wilfred Chen
First page of article [source]


Ecological control analysis: being(s) in control of mass flux and metabolite concentrations in anaerobic degradation processes

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2007
Wilfred F. M. Röling
Summary Identification of the functional groups of microorganisms that are predominantly in control of fluxes through, and concentrations in, microbial networks would benefit microbial ecology and environmental biotechnology: the properties of those controlling microorganisms could be studied or monitored specifically or their activity could be modulated in attempts to manipulate the behaviour of such networks. Herein we present ecological control analysis (ECA) as a versatile mathematical framework that allows for the quantification of the control of each functional group in a microbial network on its process rates and concentrations of intermediates. In contrast to current views, we show that rates of flow of matter are not always limited by a single functional group; rather flux control can be distributed over several groups. Also, control over intermediate concentrations is always shared. Because of indirect interactions, through other functional groups, the concentration of an intermediate can also be controlled by functional groups not producing or consuming it. Ecological control analysis is illustrated by a case study on the anaerobic degradation of organic matter, using experimental data obtained from the literature. During anaerobic degradation, fermenting microorganisms interact with terminal electron-accepting microorganisms (e.g. halorespirers, methanogens). The analysis indicates that flux control mainly resides with fermenting microorganisms, but can shift to the terminal electron-accepting microorganisms under less favourable redox conditions. Paradoxically, halorespiring microorganisms do not control the rate of perchloroethylene and trichloroethylene degradation even though they catalyse those processes themselves. [source]


Ralstonia pickettii in environmental biotechnology: potential and applications

JOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2007
M.P. Ryan
Summary Xenobiotic pollutants such as toluene and trichloroethylene are released into the environment by various industrial processes. Ralstonia pickettii possess significant biotechnological potential in the field of bioremediation and has demonstrated the ability to breakdown many of these toxic substances. Here, we provide a description of the major compounds that various strains of R. pickettii are capable of degrading and a brief review of their breakdown pathways and an argument for its use in bioremediation. [source]


A survey of bioengineering research in Canada-2007

BIOTECHNOLOGY PROGRESS, Issue 4 2008
Andrew J. Daugulis
Abstract Research activity in bioengineering at Canadian universities has been surveyed. Details were provided by chemical engineering departments in response to a common request for information on activities by individual researchers and for key publications. The information provided has been grouped by topics within the broad theme of "Bioengineering," and contributions from individual departments have been summarized within these topics. Although many aspects of bioengineering research are being pursued in Canada, it would appear as though environmental biotechnology, biomaterials, and tissue/cell culture are the most active areas under investigation. [source]


Industrial Potential of Organic Solvent Tolerant Bacteria

BIOTECHNOLOGY PROGRESS, Issue 3 2004
Yogita N. Sardessai
Most bacteria and their enzymes are destroyed or inactivated in the presence of organic solvents. Organic solvent tolerant bacteria are a relatively novel group of extremophilic microorganisms that combat these destructive effects and thrive in the presence of high concentrations of organic solvents as a result of various adaptations. These bacteria are being explored for their potential in industrial and environmental biotechnology, since their enzymes retain activity in the presence of toxic solvents. This property could be exploited to carry out bioremediation and biocatalysis in the presence of an organic phase. Because a large number of substrates used in industrial chemistry, such as steroids, are water-insoluble, their bioconversion rates are affected by poor dissolution in water. This problem can be overcome by carrying out the process in a biphasic organic-aqueous fermentation system, wherein the substrate is dissolved in the organic phase and provided to cells present in the aqueous phase. In bioprocessing of fine chemicals such as cis -diols and epoxides using such cultures, organic solvents can be used to extract a toxic product from the aqueous phase, thereby improving the efficiency of the process. Bacterial strains reported to grow on and utilize saturated concentrations of organic solvents such as toluene can revolutionize the removal of such pollutants. It is now known that enzymes display striking new properties in the presence of organic solvents. The role of solvent-stable enzymes in nonaqueous biocatalysis needs to be explored and could result in novel applications. [source]