Home About us Contact | |||
Environ
Selected AbstractsMutagenic repair of DNA interstrand crosslinksENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2010Xi Shen Abstract Formation of DNA interstrand crosslinks (ICLs) in chromosomal DNA imposes acute obstruction of all essential DNA functions. For over 70 years bifunctional alkylators, also known as DNA crosslinkers, have been an important class of cancer chemotherapeutic regimens. The mechanisms of ICL repair remains largely elusive. Here, we review a eukaryotic mutagenic ICL repair pathway discovered by work from several laboratories. This repair pathway, alternatively termed recombination-independent ICL repair, involves the incision activities of the nucleotide excision repair (NER) mechanism and lesion bypass polymerase(s). Repair of the ICL is initiated by dual incisions flanking the ICL on one strand of the double helix; the resulting gap is filled in by lesion bypass polymerases. The remaining lesion is subsequently removed by a second round of NER reaction. The mutagenic repair of ICL likely interacts with other cellular mechanisms such as the Fanconi anemia pathway and recombinational repair of ICLs. These aspects will also be discussed. Environ. Mol. Mutagen., 2010. © 2010 Wiley-Liss, Inc. [source] Assessing the link between BACH1/FANCJ and MLH1 in DNA crosslink repairENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2010Sharon B. Cantor Abstract FANCJ (also known as BRIP1 or BACH1) is a DNA helicase that was originally identified by its direct interaction with the hereditary breast cancer protein, BRCA1. Similar to BRCA1, FANCJ function is essential for DNA repair and breast cancer suppression. FANCJ is also mutated in the cancer prone syndrome Fanconi anemia, for which patient cells are characterized by extreme sensitivity to agents that generate DNA interstand crosslinks. Unexpectedly, correction of the interstrand crosslink sensitivity of FANCJ-null patient cells did not require the FANCJ/BRCA1 interaction. Instead, FANCJ binding to the mismatch repair protein, MLH1 was required. Given this finding, we address the role of FANCJ and MLH1 in DNA crosslink processing and how their functions could be linked in checkpoint and/or recombination pathways. We speculate that after DNA crosslink processing and repair, the FANCJ/MLH1 interaction is critical for recovery and restart of replication. These ideas are considered and summarized in this review. Environ. Mol. Mutagen., 2010. © 2010 Wiley-Liss, Inc. [source] Strategies for DNA interstrand crosslink repair: Insights from worms, flies, frogs, and slime moldsENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2010Mitch McVey Abstract DNA interstrand crosslinks (ICLs) are complex lesions that covalently link both strands of the DNA double helix and impede essential cellular processes such as DNA replication and transcription. Recent studies suggest that multiple repair pathways are involved in their removal. Elegant genetic analysis has demonstrated that at least three distinct sets of pathways cooperate in the repair and/or bypass of ICLs in budding yeast. Although the mechanisms of ICL repair in mammals appear similar to those in yeast, important differences have been documented. In addition, mammalian crosslink repair requires other repair factors, such as the Fanconi anemia proteins, whose functions are poorly understood. Because many of these proteins are conserved in simpler metazoans, nonmammalian models have become attractive systems for studying the function(s) of key crosslink repair factors. This review discusses the contributions that various model organisms have made to the field of ICL repair. Specifically, it highlights how studies performed with C. elegans, Drosophila, Xenopus, and the social amoeba Dictyostelium serve to complement those from bacteria, yeast, and mammals. Together, these investigations have revealed that although the underlying themes of ICL repair are largely conserved, the complement of DNA repair proteins utilized and the ways in which each of the proteins is used can vary substantially between different organisms. Environ. Mol. Mutagen., 2010. © 2010 Wiley-Liss, Inc. [source] Interstrand crosslink inducing agents in pretransplant conditioning therapy for hematologic malignanciesENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2010Benigno C. Valdez Abstract Despite successful molecularly targeted, highly specific, therapies for hematologic malignancies, the DNA interstrand crosslinking agents, which are among the oldest and least specific cytotoxic drugs, still have an important role. This is particularly true in stem cell transplantation, where virtually every patient receives conditioning therapy with a DNA-alkylating agent-based program. However, due to concern about serious additive toxicities with combinations of different alkylating drugs, the last several years have seen nucleoside analogs, whose cytotoxic action follows vastly different molecular pathways, introduced in combination with alkylating agents. The mechanistic differences paired with different metabolic pathways for the respective drugs have clinically translated into increased safety without appreciable loss of antileukemic activity. In this report, we review pre-clinical evidence for synergistic antileukemic activity when nucleoside analog(s) and DNA-alkylating agent(s) are combined in the most appropriate manner(s), without a measurable decrease in clinical efficacy compared with the more established alkylating agent combinations. Data from our own laboratory using combinations of fludarabine, clofarabine, and busulfan as prototype representatives for these respective classes of cytotoxic agents are combined with information from other investigators to explain how the observed molecular events will result in greatly enhanced synergistic cytotoxicity. We further present possible mechanistic pathways for such desirable cytotoxic synergism. Finally, we propose how this information-backed hypothesis can be incorporated in the design of the next generation conditioning therapy programs in stem cell transplantation to optimize antileukemic efficacy while still safeguarding patient safety. Environ. Mol. Mutagen., 2010. © 2010 Wiley-Liss, Inc. [source] The mitochondrial proteome: A dynamic functional program in tissues and disease states,ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 5 2010Robert S. Balaban Abstract The nuclear DNA transcriptional programming of the mitochondria proteome varies dramatically between tissues depending on its functional requirements. This programming generally regulates all of the proteins associated with a metabolic or biosynthetic pathway associated with a given function, essentially regulating the maximum rate of the pathway while keeping the enzymes at the same molar ratio. This may permit the same regulatory mechanisms to function at low- and high-flux capacity situations. This alteration in total protein content results in rather dramatic changes in the mitochondria proteome between tissues. A tissues mitochondria proteome also changes with disease state, in Type 1 diabetes the liver mitochondrial proteome shifts to support ATP production, urea synthesis, and fatty acid oxidation. Acute flux regulation is modulated by numerous posttranslational events that also are highly variable between tissues. The most studied posttranslational modification is protein phosphorylation, which is found all of the complexes of oxidative phosphorylation and most of the major metabolic pathways. The functional significance of these modifications is currently a major area of research along with the kinase and phosphatase regulatory network. This near ubiquitous presence of protein phosphorylations, and other posttranslational events, in the matrix suggest that not all posttranslational events have functional significance. Screening methods are being introduced to detect the active or dynamic posttranslational sites to focus attention on sites that might provide insight into regulatory mechanisms. Environ. Mol. Mutagen., 2010. Published 2010 Wiley-Liss, Inc. [source] A compendium of human mitochondrial gene expression machinery with links to diseaseENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 5 2010Timothy E. Shutt Abstract Mammalian mitochondrial DNA encodes 37 essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (13 mRNAs, 12S and 16S rRNAs, and 22 tRNAs), the remaining factors needed for mitochondrial gene expression (i.e., transcription, RNA processing/modification, and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and, while doing so, we highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging. Environ. Mol. Mutagen., 2010. © 2010 Wiley-Liss, Inc. [source] Cytogenetic status in newborns and their parents in Madrid: The BioMadrid studyENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2010Virginia Lope Abstract Monitoring cytogenetic damage is frequently used to assess population exposure to environmental mutagens. The cytokinesis-block micronucleus assay is one of the most widely used methods employed in these studies. In the present study we used this assay to assess the baseline frequency of micronuclei in a healthy population of father-pregnant woman-newborn trios drawn from two Madrid areas. We also investigated the association between micronucleus frequency and specific socioeconomic, environmental, and demographic factors collected by questionnaire. Mercury, arsenic, lead, and cadmium blood levels were measured by atomic absorption spectrometry. The association between micronucleated cell frequency and the variables collected by questionnaire, as well as, the risk associated with the presence of elevated levels of metals in blood, was estimated using Poisson models, taking the number of micronucleated cells in 1,000 binucleated cells (MNBCs) as the dependent variable. Separate analyses were conducted for the 110 newborns, 136 pregnant women, and 134 fathers in whom micronuclei could be assessed. The mean number of micronucleated cells per 1,000 binucleated cells was 3.9, 6.5, and 6.1 respectively. Our results show a statistically significant correlation in MNBC frequency between fathers and mothers, and between parents and newborns. Elevated blood mercury levels in fathers were associated with significantly higher MNBC frequency, compared with fathers who had normal mercury levels (RR:1.21; 95%CI:1.02,1.43). This last result suggests the need to implement greater control over populations which, by reason of their occupation or life style, are among those most exposed to this metal. Environ. Mol. Mutagen., 2010. © 2009 Wiley-Liss, Inc. [source] Flow cytometry peripheral blood micronucleus test in vivo: Determination of potential thresholds for aneuploidy induced by spindle poisonsENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2010Zoryana Cammerer Abstract Non-DNA binding genotoxins (e.g., aneugens), unlike DNA-binding genotoxins, are theoretically expected to show thresholded concentration-effect response curves. This is a major issue in genetic toxicology testing because the identification of thresholds in vivo can provide a safety margin for exposure to a particular compound. In the current study we measured micronucleus induction by flow cytometry to determine the dose-response curves for tubulin interacting agents, a specific class of aneugens. All experiments with aneugens, which include colchicine, vinblastine, vincristine, as well as the clastogen cyclophosphamide (CP) were performed in mice to avoid the splenic elimination of micronucleated reticulocytes, which has been described in rats. Flow cytometry analysis revealed a non-linear dose-dependent increase in micronuclei frequencies for all tested aneugens, and a linear dose response curve for the clastogen, CP. To determine whether micronucleus induction at higher doses was due to chromosome loss (aneuploidy) or chromosome breakage (clastogenicity), flow sorting of the micronucleated reticulocytes and fluorescent in situ hybridization (FISH) with a mouse pan centromeric probe were performed for vinblastine, vincristine, and colchicine. Statistical evaluation of the flow cytometry and FISH data was performed to determine the threshold levels for chromosome loss in vivo. The threshold concentrations for vinblastine, vincristine, and colchicine were found at 0.35, 0.017, and 0.49 mg kg,1, respectively. Environ. Mol. Mutagen., 2010. © 2009 Wiley-Liss, Inc. [source] Formaldehyde and leukemia: Epidemiology, potential mechanisms, and implications for risk assessment,ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2010Luoping Zhang Abstract Formaldehyde is widely used in the United States and other countries. Occupational and environmental exposures to formaldehyde may be associated with an increased risk of leukemia in exposed individuals. However, risk assessment of formaldehyde and leukemia has been challenging due to inconsistencies in human and animal studies and the lack of a known mechanism for leukemia induction. Here, we provide a summary of the symposium at the Environmental Mutagen Society Meeting in 2008, which focused on the epidemiology of formaldehyde and leukemia, potential mechanisms, and implication for risk assessment, with emphasis on future directions in multidisciplinary formaldehyde research. Updated results of two of the three largest industrial cohort studies of formaldehyde-exposed workers have shown positive associations with leukemia, particularly myeloid leukemia, and a recent meta-analysis of studies to date supports this association. Recent mechanistic studies have shown the formation of formaldehyde-induced DNA adducts and characterized the essential DNA repair pathways that mitigate formaldehyde toxicity. The implications of the updated findings for the design of future studies to more effectively assess the risk of leukemia arising from formaldehyde exposure were discussed and specific recommendations were made. A toxicogenomic approach in experimental models and human exposure studies, together with the measurement of biomarkers of internal exposure, such as formaldehyde-DNA and protein adducts, should prove fruitful. It was recognized that increased communication among scientists who perform epidemiology, toxicology, biology, and risk assessment could enhance the design of future studies, which could ultimately reduce uncertainty in the risk assessment of formaldehyde and leukemia. Environ. Mol. Mutagen., 2010. Published 2009 Wiley-Liss, Inc. [source] Synergistic genotoxicity caused by low concentration of titanium dioxide nanoparticles and p,p,-DDT in human hepatocytesENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2010Yun Shi Abstract The use of titanium dioxide nanoparticles (nano-TiO2) for the degradation of dichlorodiphenyltrichloroethane (p,p,-DDT) increases the risk of exposure to trace nano-TiO2 and p,p,-DDT mixtures. The interaction of p,p,-DDT and nano-TiO2 at low concentrations may alter toxic response relative to nano-TiO2 or p,p,-DDT alone. In this work, the combined genotoxicity of trace nano-TiO2 and p,p,-DDT on human embryo L-02 hepatocytes without photoactivation was studied. Nano-TiO2 (0.1 g/L) was mixed with 0.01,1 mmol/L p,p,-DDT to determine adsorption isotherms. L-02 cells were exposed to different levels of p,p,-DDT (0, 0.001, 0.01, and 0.1 ,mol/L) and nano-TiO2 (0, 0.01, 0.1, and 1 ,g/mL) respectively. The adsorption of p,p,-DDT by nano-TiO2 was approximately 0.3 mmol/g. Cell viability, apoptosis, and DNA double strand breaks were similar among all test groups. Nano-TiO2 alone (0.01,1 ,g/mL) increased the levels of oxidative stress and oxidative DNA adducts (8-OHdG), but it did not induce DNA breaks or chromosome damage. Addition of trace nano-TiO2 with trace p,p,-DDT synergistically enhanced genotoxicity via increasing oxidative stress, oxidative DNA adducts, DNA breaks, and chromosome damage in L-02 cells. Low concentrations of nano-TiO2 and p,p,-DDT increased oxidativestress by reactive oxygen species (ROS) formation and lipid oxidation. Oxidative stress is a major pathway for DNA and chromosome damage. Dose-dependent synergistic genotoxicity induced by combined exposure of trace p,p,-DDT and nano-TiO2 suggests a potential environmental risk of nano-TiO2 assisted photocatalysis. Environ. Mol. Mutagen., 2010. © 2009 Wiley-Liss, Inc. [source] Expression of caspase and apoptotic signal pathway induced by sulfur dioxideENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2010Juli Bai Abstract Sulfur dioxide (SO2) is a common air pollutant that is released in low concentrations into the atmosphere and in higher concentrations in some work places. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00 ± 1.01, 28.00 ± 1.77, and 56.00 ± 3.44 mg/m3 SO2 for 7 days (6 hr/day), while control rats were exposed to filtered air under the same conditions. The mRNA and protein levels of caspase-3, caspase-8, and caspase-9 were analyzed using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and an immunohistochemistry method. Activities of caspases were detected using colorimetric and fluorescent assays. Chromatin degradation and cell morphological changes were investigated by TUNEL assay and H&E staining in livers and lungs, respectively. The results showed that mRNA levels, protein levels and activities of caspase-3, caspase-8, and caspase-9 were increased in a dose-dependent manner in livers and lungs of rats after SO2 inhalation. In addition, livers were infiltrated with lymphocytes, congestion and inflammation occurred in lungs, and eosinophil cells and apoptotic cells increased in both livers and lungs after SO2 inhalation. These results suggest that SO2 exposure increases the expression and activity of both initiator and and effector caspases, and may induce apoptosis in liver and lung of rats through both death receptor and mitochondrial pathways. Environ. Mol. Mutagen. 2010. © 2009 Wiley-Liss, Inc. [source] DNA adduct kinetics in reproductive tissues of DNA repair proficient and deficient male mice after oral exposure to benzo(a)pyreneENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2010Nicole Verhofstad Abstract Benzo(a)pyrene (B[a]P) can induce somatic mutations, whereas its potential to induce germ cell mutations is unclear. There is circumstantial evidence that paternal exposure to B[a]P can result in germ cell mutations. Since DNA adducts are thought to be a prerequisite for B[a]P induced mutations, we studied DNA adduct kinetics by 32P-postlabeling in sperm, testes and lung tissues of male mice after a single exposure to B[a]P (13 mg/kg bw, by gavage). To investigate DNA adduct formation at different stages of spermatogenesis, mice were sacrificed at Day 1, 4, 7, 10, 14, 21, 32, and 42 after exposure. In addition, DNA repair deficient (Xpc,/,) mice were used to study the contribution of nucleotide excision repair in DNA damage removal. DNA adducts were detectable with highest levels in lung followed by sperm and testis. Maximum adduct levels in the lung and testis were observed at Day 1 after exposure, while adduct levels in sperm reached maximum levels at ,1 week after exposure. Lung tissue and testis of Xpc,/, mice contained significantly higher DNA adduct levels compared to wild type (Wt) mice over the entire 42 day observation period (P < 0.05). Differences in adduct half-life between Xpc,/, and Wt mice were only observed in testis. In sperm, DNA adduct levels were significantly higher in Xpc,/, mice than in Wt mice only at Day 42 after exposure (P = 0.01). These results indicate that spermatogonia and testes are susceptible for the induction of DNA damage and rely on nucleotide excision repair for maintaining their genetic integrity. Environ. Mol. Mutagen. 2010. © 2009 Wiley-Liss, Inc. [source] Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicityENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2010P. Robinan Gentry Abstract A comprehensive literature search was conducted to identify information on gene expression changes following exposures to inorganic arsenic compounds. This information was organized by compound, exposure, dose/concentration, species, tissue, and cell type. A concentration-related hierarchy of responses was observed, beginning with changes in gene/protein expression associated with adaptive responses (e.g., preinflammatory responses, delay of apoptosis). Between 0.1 and 10 ,M, additional gene/protein expression changes related to oxidative stress, proteotoxicity, inflammation, and proliferative signaling occur along with those related to DNA repair, cell cycle G2/M checkpoint control, and induction of apoptosis. At higher concentrations (10,100 ,M), changes in apoptotic genes dominate. Comparisons of primary cell results with those obtained from immortalized or tumor-derived cell lines were also evaluated to determine the extent to which similar responses are observed across cell lines. Although immortalized cells appear to respond similarly to primary cells, caution must be exercised in using gene expression data from tumor-derived cell lines, where inactivation or overexpression of key genes (e.g., p53, Bcl-2) may lead to altered genomic responses. Data from acute in vivo exposures are of limited value for evaluating the dose-response for gene expression, because of the transient, variable, and uncertain nature of tissue exposure in these studies. The available in vitro gene expression data, together with information on the metabolism and protein binding of arsenic compounds, provide evidence of a mode of action for inorganic arsenic carcinogenicity involving interactions with critical proteins, such as those involved in DNA repair, overlaid against a background of chemical stress, including proteotoxicity and depletion of nonprotein sulfhydryls. The inhibition of DNA repair under conditions of toxicity and proliferative pressure may compromise the ability of cells to maintain the integrity of their DNA. Environ. Mol. Mutagen., 2010. © 2009 Wiley-Liss, Inc. [source] Folate deficiency in human peripheral blood lymphocytes induces chromosome 8 aneuploidy but this effect is not modified by riboflavinENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2010Juan Ni Abstract Chromosome 8 aneuploidy is a common event in certain cancers but whether folate (F) deficiency induces chromosome 8 aneuploidy is not known. Furthermore the impact of riboflavin (R) deficiency, which may alter activity of a key enzyme in folate metabolism, on these events is unknown. Therefore, the aim of our research was to test the following hypotheses: (a) F deficiency induces chromosome 8 aneuploidy; (b) chromosome 8 aneuploidy is affected by F deficiency to a similar degree as chromosome 17 and (c) R deficiency aggravates the risk of aneuploidy caused by F deficiency. These hypotheses were tested in long-term cultures of lymphocytes from twenty female healthy volunteers (aged 30,48 years). Lymphocytes were cultured in each of the four possible combinations of low (L) and high (H) F (LF, 20 nmol/L, HF 200 nmol/L, respectively) and L and H R (LR 1 nmol/L, HR 500 nmol/L, respectively) media (LFLR, LFHR, HFLR, HFHR) for 9 days. Chromosomes 8 and 17 aneuploidy was measured in mononucleated (MONO) and cytokinesis-blocked binucleated (BN) cells using dual-color fluorescence in situ hybridization (FISH) with fluorescent centromeric probes specific for chromosomes 8 and 17. Culture in LF media (LFLR or LFHR) induced significant and similar increases in frequencies of aneuploidy of chromosomes 8 and 17 (P < 0.001) relative to culture in HF media (HFLR or HFHR). There was no significant effect of R concentration on aneuploidy frequency for either chromosome. We conclude that F deficiency is a possible cause of chromosome 8 aneuploidy. Environ. Mol. Mutagen. 2010. © 2009 Wiley-Liss, Inc. [source] No increases in biomarkers of genetic damage or pathological changes in heart and brain tissues in male rats administered methylphenidate hydrochloride (Ritalin) for 28 days,,ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2010Kristine L. Witt Abstract Following a 2005 report of chromosomal damage in children with attention deficit/hyperactivity disorder (ADHD) who were treated with the commonly prescribed medication methylphenidate (MPH), numerous studies have been conducted to clarify the risk for MPH-induced genetic damage. Although most of these studies reported no changes in genetic damage endpoints associated with exposure to MPH, one recent study (Andreazza et al. [2007]: Prog Neuropsychopharmacol Biol Psychiatry 31:1282,1288) reported an increase in DNA damage detected by the Comet assay in blood and brain cells of Wistar rats treated by intraperitoneal injection with 1, 2, or 10 mg/kg MPH; no increases in micronucleated lymphocyte frequencies were observed in these rats. To clarify these findings, we treated adult male Wistar Han rats with 0, 2, 10, or 25 mg/kg MPH by gavage once daily for 28 consecutive days and measured micronucleated reticulocyte (MN-RET) frequencies in blood, and DNA damage in blood, brain, and liver cells 4 hr after final dosing. Flow cytometric evaluation of blood revealed no significant increases in MN-RET. Comet assay evaluations of blood leukocytes and cells of the liver, as well as of the striatum, hippocampus, and frontal cortex of the brain showed no increases in DNA damage in MPH-treated rats in any of the three treatment groups. Thus, the previously reported observations of DNA damage in blood and brain tissue of rats exposed to MPH for 28 days were not confirmed in this study. Additionally, no histopathological changes in brain or heart, or elevated serum biomarkers of cardiac injury were observed in these MPH-exposed rats. Environ. Mol. Mutagen. 2010. Published 2009 Wiley-Liss, Inc. [source] Radioprotective effects of Daflon against genotoxicity induced by gamma irradiation in human cultured lymphocytesENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2009Seyed Jalal Hosseinimehr Abstract The ability of Daflon to protect against genotoxicity induced by gamma irradiation has been investigated in vivo and in vitro in cultured lymphocytes from healthy human volunteers. Peripheral human blood samples were collected predose (10 min before) and 1, 2, and 3 hr after a single oral ingestion of 1000 mg of Daflon. At each time point, whole blood was exposed in vitro to 150 cGy of cobalt-60 gamma rays, and then the lymphocytes were cultured with mitogenic stimulation to determine the micronuclei in cytokinesis-blocked binucleated cells. For each volunteer, the results showed a significant increase in the incidence of micronuclei after exposure to gamma irradiation as compared to control unexposed samples. As early as 1 hr after Daflon administration, a significant decrease in the incidence of micronuclei was observed in comparison with similarly irradiated lymphocytes collected before administration. The maximum protection was reached 1 hr after administration of Daflon with a significant decrease in the frequency of micronuclei of 40%. These findings suggest the possible application of Daflon for the protection of human lymphocytes from the genetic damage and side effects induced by gamma irradiation. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source] Suppression of the mouse double minute 4 gene causes changes in cell cycle control in a human mesothelial cell line responsive to ultraviolet radiation exposureENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2009Melisa Bunderson-Schelvan Abstract The TP53 tumor suppressor gene is the most frequently inactivated gene in human cancer identified to date. However, TP53 mutations are rare in human mesotheliomas, as well as in many other types of cancer, suggesting that aberrant TP53 function may be due to alterations in its regulatory pathways. Mouse double minute 4 (MDM4) has been shown to be a key regulator of TP53 activity, both independently as well as in concert with its structural homolog, Mouse Double Minute 2 (MDM2). The purpose of this study was to characterize the effects of MDM4 suppression on TP53 and other proteins involved in cell cycle control before and after ultraviolet (UV) exposure in MeT5a cells, a nonmalignant human mesothelial line. Short hairpin RNA (shRNA) was used to investigate the impact of MDM4 on TP53 function and cellular transcription. Suppression of MDM4 was confirmed by Western blot. MDM4 suppressed cells were analyzed for cell cycle changes with and without exposure to UV. Changes in cell growth as well as differences in the regulation of direct transcriptional targets of TP53, CDKN1A (cyclin-dependent kinase 1,, p21) and BAX, suggest a shift from cell cycle arrest to apoptosis upon increasing UV exposure. These results demonstrate the importance of MDM4in cell cycle regulation as well as a possible role inthe pathogenesis of mesothelioma-type cancers. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source] Arsenate and dimethylarsinic acid in drinking water did not affect DNA damage repair in urinary bladder transitional cells or micronuclei in bone marrow,ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2009Amy Wang Abstract Arsenic is a human skin, lung, and urinary bladder carcinogen, and may act as a cocarcinogen in the skin and urinary bladder. Possible modes of action of arsenic carcinogenesis/cocarcinogenesis include oxidative stress induction and inhibition of DNA damage repair. We investigated the effects of arsenic in drinking water on DNA damage repair in urinary bladder transitional cells and on micronucleus formation in bone marrow. F344 rats were given 100 ppm arsenate [As(V)] or dimethylarsinic acid [DMA(V)] in drinking water for 1 week. The in vivo repair of cyclophosphamide (CP)-induced DNA damage resulting from a single oral gavage of CP, and the in vitro repair of hydrogen peroxide (H2O2)- or formaldehyde-induced DNA damage, resulting from adding H2O2 or formaldehyde into cell medium, were measured by the Comet assay. DMA(V) effects were not observed on either CP-induced DNA damage induction or on DNA repair. Neither DMA(V) nor As(V) increased the H2O2 - or formaldehyde-induced DNA damage, and neither inhibited the repair of H2O2 -induced DNA damage. Neither DMA(V) nor As(V) increased the micronucleus frequency, nor did they elevate micronucleus frequency resulting from CP treatment above the level observed by the treatment with CP alone. These results suggest that arsenic carcinogenesis/cocarcinogenesis in the urinary bladder may not be via DNA damage repair inhibition. To our knowledge this is the first report of arsenic effects on DNA damage repair in the urinary bladder. Environ. Mol. Mutagen. 2009. Published 2009 by Wiley-Liss, Inc. [source] Centrosome amplification induced by the antiretroviral nucleoside reverse transcriptase inhibitors lamivudine, stavudine, and didanosineENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2009Mia Yu Abstract In cultured cells, exposure to the nucleoside reverse transcriptase inhibitor (NRTI) zidovudine (AZT) induces genomic instability, cell cycle arrest, micronuclei, sister chromatid exchanges, and shortened telomeres. In previous studies, we demonstrated AZT-induced centrosome amplification (>2 centrosomes/cell). Here, we investigate centrosome amplification in cells exposed to other commonly used NRTIs. Experiments were performed using Chinese Hamster ovary (CHO) cells, and two normal human mammary epithelial cell (NHMEC) strains: M99005 and M98040, which are high and low incorporators of AZT into DNA, respectively. Cells were exposed for 24 hr to lamivudine (3TC), stavudine (d4T), didanosine (ddI), and thymidine, and stained with anti-pericentrin antibody. Dose response curves were performed to determine cytotoxicity and a lower concentration at near plasma levels and a 10 fold higher concentration were chosen for the experiments. In CHO cells, there was a concentration-dependent, significant (P < 0.05) increase in centrosome amplification for each of the NRTIs. In NHMEC strain M99005, an NRTI-induced increase (P < 0.05) in centrosome amplification was observed for the high concentrations of each NRTI and the low doses of 3TC and ddI. In NHMEC strain M98040, the high doses of ddI and d4T showed significant increases in centrosome amplification. Functional viability of amplified centrosomes was assessed by arresting microtubule nucleation with nocodazole. In cells with more than two centrosomes, the ability to recover microtubule nucleation was similar to that of unexposed cells. We conclude that centrosome amplification is a consequence of exposure to NRTIs and that cells with centrosome amplification are able to accomplish cell division. Environ. Mol. Mutagen., 2009. © 2009 Wiley-Liss, Inc. [source] Centriole separation in DNA damage-induced centrosome amplificationENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2009Chiara Saladino Abstract Altered centrosome numbers are seen in tumor cells in response to DNA damaging treatments and are hypothesised to contribute to cancer development. The mechanism by which the centrosome and chromosome cycles become disconnected after DNA damage is not yet clear. Here, we show that centrosome amplification occurs after ionising radiation (IR) in chicken DT40 cells that lack DNA-PK, Ku70, H2AX, Xpa, and Scc1, demonstrating that these activities are not required for centrosome amplification. We show that inhibition of topoisomerase II induces Chk1-dependent centrosome amplification, a similar response to that seen after IR. In the immortalised, nontransformed hTERT-RPE1 line, we observed centriole splitting, followed by dose-dependent centrosome amplification, after IR. We found that IR results in the formation of single, not multiple, daughter centrioles during centrosome amplification in U2OS osteosarcoma cells. Analysis of BRCA1 and BRCA2 mutant tumor cells showed high levels of centriole splitting in the absence of any treatment. IR caused pronounced levels of centrosome amplification in BRCA1 mutant breast cancer cells. These data show that centrosome amplification occurs after different forms of DNA damage in chicken cells, in nontransformed human cells and in human tumor cell lines, indicating that this is a general response to DNA damaging treatments. Together, our data suggest that centriole splitting is a key step in potentiation of the centrosome amplification that is a general response to DNA damage. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source] Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrAENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 6 2009Patrudu S. Makena Abstract Quercetin (QT) and Taxifolin (TF) are structurally similar plant polyphenols. Both have been reported to have therapeutic potential as anti-cancer drugs and antioxidants. Mutagenic effects of QT and TF were evaluated using Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA tester strains. Either in the presence or absence of S9 mix, QT was mutagenic to TA102 and WP2 uvrA. However, the mutagenicity of QT was significantly enhanced in the presence of S9 mix. Likewise, in the presence of Iron (Fe2+) and NADPH generating system (NGS) and absence of S9 mix, QT induced significantly high mutations in both TA102 and WP-2 uvrA. Mutagenicity of QT decreased in both strains in the presence of Iron (Fe2+) or NGS alone. TF was not mutagenic in the presence or absence of S9 mix in both TA102 and WP-2 uvrA 2, regardless of the presence of iron or NGS. Incorporation of antioxidants (ascorbate, superoxide dismutase (SOD), catalase (CAT)) and/or iron chelators (desferroxamine (DF) and ethylenediamine-tetraacetate (EDTA)) in the test systems markedly decreased QT-induced mutations in both tester strains. These results suggest that QT but not TF, could induce mutations in the presence or absence of rat liver S9 or Iron (Fe2+) and NGS in both tester strains by redox cycling and Fenton reactions to produce oxygen free radicals. Our results indicate that a minor structural variation between the two plant polyphenols could elicit a marked difference in their genotoxicities. These results provide a basis for further study into the potential use of QT in combination with iron supplements. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source] Vascular endothelial growth factor gene polymorphisms are associated with the risk of developing adenomyosisENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 5 2009Shan Kang Abstract Vascular endothelial growth factor (VEGF), a major mediator of angiogenesis and vascular permeability, may play a key role in the development of adenomyosis. The aim of this study was to investigate whether these four VEGF polymorphisms (,2578C/A, ,1154G/A, ,460C/T, and +936C/T) were associated with the risk of adenomyosis development. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in 174 adenomyosis patients and 199 frequency-matched control women. There were significant differences between patients and control group in allele frequencies and genotype distributions of the ,2578C/A polymorphisms (P = 0.010 and 0.044, respectively). Compared with the C/C genotype, the A/A + C/A genotype could significantly modify the risk of developing adenomyosis [odds ratio (OR) = 0.64, 95% confidence interval (CI) = 0.42,0.97]. For the ,1154G/A polymorphism, the allele frequencies and genotype distributions in patient group were significant different from those of the controls (P = 0.001 and 0.007, respectively). Compared with the G/G genotype, the A/A + G/A genotype could significantly decrease the risk of developing adenomyosis (OR = 0.51, 95% CI = 0.33,0.80). However, the genotype distributions and allele frequencies of the ,460C/T and +936C/T polymorphisms did not significantly differ between controls and patients (all P value > 0.05). The haplotype analysis suggested that the TGA (VEGF ,460/,1154/,2578) and CGA haplotypes exhibited a significant decrease in the risk of developing adenomyosis compared with the haplotype of TGC (OR = 0.64, 95% CI = 0.41,1.00; OR = 0.44, 95% CI = 0.21,0.93, respectively). The study indicated that the ,2578A or ,1154A allele of VEGF gene could significantly decrease the risk of adenomyosis and might be potentially protective factors for adenomyosis development. Environ. Mol. Mutagen., 2009. © 2009 Wiley-Liss, Inc. [source] Polymorphisms in innate immunity genes and lung cancer risk in Xuanwei, China,ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2009Min Shen Abstract The high incidence of lung cancer in Xuanwei County, China has been attributed to exposure to indoor smoky coal emissions that contain polycyclic aromatic hydrocarbons (PAHs). The inflammatory response induced by coal smoke components may promote lung tumor development. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and lung cancer risk in a population-based case,control study (122 cases and 122 controls) in Xuanwei. A total of 1,360 tag SNPs in 149 gene regions were included in the analysis. FCER2 rs7249320 was the most significant SNP (OR: 0.30; 95% CI: 0.16,0.55; P: 0.0001; false discovery rate value, 0.13) for variant carriers. The gene regions ALOX12B/ALOX15B and KLK2 were associated with increased lung cancer risk globally (false discovery rate value <0.15). In addition, there were positive interactions between KLK15 rs3745523 and smoky coal use (OR: 9.40; Pinteraction = 0.07) and between FCER2 rs7249320 and KLK2 rs2739476 (OR: 10.77; Pinteraction = 0.003). Our results suggest that genetic polymorphisms in innate immunity genes may play a role in the genesis of lung cancer caused by PAH-containing coal smoke. Integrin/receptor and complement pathways as well as IgE regulation are particularly noteworthy. Environ. Mol. Mutagen., 2009. Published 2009 Wiley-Liss, Inc. [source] DNA damage in peripheral blood leukocytes of physically active individuals as measured by the alkaline single cell gel electrophoresis assayENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2009Gursatej Gandhi Abstract DNA damage induced by physical activity and/or exercise has been reported under different conditions but not for individuals maintaining physical fitness by regular strenuous exercise. Therefore, we compared levels of DNA damage in blood leukocytes of 40 healthy individuals (35 males, 5 females) who regularly exercised in gymnasiums/health clubs and 15 healthy sedentary controls who had never exercised. The former group was selected (after informed consent) on the basis of how long they had been exercising on a regular basis as well as their exercise schedule and regimen. The length of time since starting a regular exercise regimen ranged from 2 months to 9 years, whereas the daily exercise duration ranged from 40 min to 3 hrs and warm-up sessions ranged from none to 90 min. The length of DNA migration (44.66 ± 2.68 ,m in males, 29.62 ± 1.69 ,m in females) and the percentage of cells with tails (79.86 ±1.27% in males, 67.20 ± 0.96% in females) in peripheral blood leukocytes of physically active individuals were increased significantly (P < 0.001) with respect to corresponding values in control males and females (18.85 ± 1.79 ,m, 23.37 ± 3.94 ,m; 24.50 ± 1.98%, 33.00 ± 4.44%, respectively). Highly significant differences for DNA damage were also observed between physically active males and females. These observations, in the absence of any other exposures, indicate a correlation between strenuous exercise to keep fit and increased levels of DNA damage. This finding may have relevance in terms of the ageing process, with diseases associated with aging, and with carcinogenesis. Environ. Mal. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source] Three structurally homologous isothiocyanates exert "Janus" characteristics in human HepG2 cellsENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2009Evelyn Lamy Abstract In this study, we used the single cell gel electrophoresis (SCGE) assay and the micronucleus (MN) test to investigate the DNA damaging effects and the antigenotoxic potencies of three structurally related ITCs in human HepG2 cells. The results show that all three ITCs possess the characteristic of a "Janus" compound, i.e., they exert both significant genotoxicity and antigenotoxicity, depending on the concentrations used in the test systems applied. Regression line analysis of the results derived by SCGE analysis showed genotoxic potency of the ITCs in the following order: 3-methylthiopropyl ITC (MTPITC) > 4-methylthiobutyl ITC (MTBITC) > 5-methylthiopentyl ITC (MTPeITC); however, this order in genotoxic potency was not confirmed by MN analysis. Additionally, the MN test showed significant mutagenicity of the test substances at higher concentrations when compared with the SCGE assay. Twenty-four hour-treatment of the cells with the ITCs, followed by a 1-hr recovery period, showed significant DNA repair in the SCGE assay at a concentration ,10 ,M MTPITC, ,3 ,M MTBITC, and ,0.1 ,M MTPeITC, respectively. In antigenotoxicity studies, the most effective concentration of MTPITC and MTPeITC toward B(a)P-induced DNA damage was 0.1 ,M in both test systems. MTBITC suppressed MN formation in B(a)P-treated cells to the background level at a concentration of 1 ,M. The ambivalent character of the ITCs under studymust be further clarified, especially in the possiblecontext of high dose therapeutic applications. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source] Influence of DNA repair gene polymorphisms on the initial repair of MMS-induced DNA damage in human lymphocytes as measured by the alkaline comet assayENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2008Charlotta Ryk Abstract We have applied the alkaline comet assay to study the functional impact of gene polymorphisms in base excision repair (APEX1 Asp148Glu, XRCC1 Arg194Trp, XRCC1 Arg399Gln) and homologous recombination repair (XRCC3 Thr241Met, NBS1 Glu185Gln), two pathways that play crucial roles in the repair of DNA damage induced by methylmethane sulphonate (MMS). We also examined the effect of polymorphisms in mismatch repair (MLH1 ,93 A/G) and nucleotide excision repair (XPD Lys751Gln) as putative negative controls based on the limited roles of these pathways in MMS-induced repair. Phytohemagglutinin-stimulated peripheral lymphocytes from 52 healthy individuals were treated with MMS and allowed to repair for 0, 15, 40, or 120 min after a 6-min washing step. DNA damage was measured as a pseudo-percentage score (comparable to % tail DNA) converted from a total visual score calculated from the distribution of cells with different degrees of damage (normal, mild, moderate and severe). The repair was faster at the beginning of the observation period than towards the end, and was not complete after 2 hr. Presence of the APEX1 148Asp, XRCC3 241Met or NBS1 185Gln alleles were significantly associated with a high pseudo-percentage score (above median) at early time points, with the APEX1 effect being most prolonged (up to 40 min after washing, odds ratio 5.6, 95% confidence interval 2.0,15.5). No significant effects were seen with the XRCC1 Arg194Trp, XRCC1 Arg399Gln, MLH1 ,93A/G and XPD Lys751Gln polymorphisms. Our results provide evidence for the functional nature of the variant alleles studied in the APEX1, XRCC3, and NBS1 genes. Environ. Mol. Mutagen., 2008. © 2008 Wiley-Liss, Inc. [source] Clonal expansions of 6-thioguanine resistant T lymphocytes in the blood and tumor of melanoma patients,ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2008Mark R. Albertini Abstract The identification of specific lymphocyte populations that mediate tumor immune responses is required for elucidating the mechanisms underlying these responses and facilitating therapeutic interventions in humans with cancer. To this end, mutant hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficient (HPRT -) T-cells were used as probes to detect T-cell clonal amplifications and trafficking in vivo in patients with advanced melanoma. Mutant T-cells from peripheral blood were obtained as clonal isolates or in mass cultures in the presence of 6-thioguanine (TG) selection and from tumor-bearing lymph nodes (LNs) or metastatic melanoma tissues by TG-selected mass cultures. Nonmutant (wild-type) cells were obtained from all sites by analogous means, but without TG selection. cDNA sequences of the T-cell receptor (TCR) beta chains (TCR-,), determined directly (clonal isolates) or following insertion into plasmids (mass cultures), were used as unambiguous biomarkers of in vivo clonality of mature T-cell clones. Clonal amplifications, identified as repetitive TCR-, V-region, complementarity determining region 3 (CDR3), and J-region gene sequences, were demonstrated at all sites studied, that is, peripheral blood, LNs, and metastatic tumors. Amplifications were significantly enriched among the mutant compared with the wild-type T-cell fractions. Importantly, T-cell trafficking was manifested by identical TCR-, cDNA sequences, including the hypervariable CDR3 motifs, being found in both blood and tissues in individual patients. The findings described herein indicate that the mutant T-cell fractions from melanoma patients are enriched for proliferating T-cells that infiltrate the tumor, making them candidates for investigations of potentially protective immunological responses. Environ. Mol. Mutagen., 2008. Published 2008 Wiley-Liss, Inc. [source] Chromosome aberrations in peripheral blood lymphocytes of high-risk HPV-infected women with HGSILENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 9 2008Rosa E. Álvarez-Rosero Abstract Genomic instability is one of the main characteristics of malignant tumors, including HPV-induced cervical cancer. The aim of this study was to explore the use of assessing chromosome aberrations (CA) in peripheral blood lymphocytes as a biomarker for genomic instability in high-risk HPV-infected women with high-grade squamous intraepithelial lesions (HGSIL). A total of 120 women were recruited for this study, following cytology/colposcopy evaluation and HPV DNA detection. The study groups consisted of 30 HPV(+) women with histologically confirmed cervical intraepithelial neoplasia grade 2/3 and 30 HPV(+) women with carcinoma in situ (CIS). Two control groups, including 30 women HPV(,) and 30 women HPV(+), were recruited among women who were reported as cytology negative. Lymphocyte cell cultures were established for 52 hr, and 100 complete metaphase cells were evaluated per subject for CA analysis. The results show that women with CIS had significantly higher frequencies of both aneuploidy (0.67 ± 0.20 vs. 0.14 ± 0.08, P = 0.020) and tetraploidy (0.88 ± 0.23 vs. 0.17 ± 0.08, P = 0.013) in comparison with HPV(,) controls. These findings suggest the usefulness of peripheral blood lymphocytes to detect genomic instability associated with HPV-induced HGSIL. Environ. Mol. Mutagen., 2008. © 2008 Wiley-Liss, Inc. [source] Pharmacokinetics, dose-range, and mutagenicity studies of methylphenidate hydrochloride in B6C3F1 mice,,ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2008Mugimane G. Manjanatha Abstract Methylphenidate hydrochloride (MPH) is one of the most frequently prescribed pediatric drugs for the treatment of attention deficit hyperactivity disorder. In a recent study, increased hepatic adenomas were observed in B6C3F1 mice treated with MPH in their diet. To evaluate the reactive metabolite, ritalinic acid (RA) of MPH and its mode of action in mice, we conducted extensive investigations on the pharmacokinetics (PK) and genotoxicity of the drug in B6C3F1 mice. For the PK study, male B6C3F1 mice were gavaged once with 3 mg/kg body weight (BW) of MPH and groups of mice were sacrificed at various time points (0.25,24 hr) for serum analysis of MPH and RA concentrations. Groups of male B6C3F1 mice were fed diets containing 0, 250, 500, 1,000, 2,000, or 4,000 ppm of MPH for 28 days to determine the appropriate doses for 24-week transgenic mutation studies. Also, the micronucleus frequencies (MN-RETs and MN-NCEs), and the lymphocyte Hprt mutants were determined in peripheral blood and splenic lymphocytes, respectively. Mice fed 4,000 ppm of MPH lost significant BW compared to control mice (P < 0.01). There was a significant increase in the average liver weights whereas kidneys, seminal vesicle, testes, thymus, and urinary bladder weights of mice fed higher doses of MPH were significantly lower than the control group (P , 0.05). There was no significant increase in either the Hprt mutant frequency or the micronucleus frequency in the treated animals. These results indicated that although MPH induced liver hypertrophy in mice, no genotoxicity was observed. Environ. Mol. Mutagen., 2008. Published 2008 Wiley-Liss, Inc. [source] In vitro evaluation of the clastogenicity of fumagillinENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2008Jevrosima Stevanovic Abstract Fumagillin, an antibiotic compound produced by Aspergillus fumigatus, is effective against microsporidia and various Amoeba species, but is also toxic when administered systemically to mammals. Furthermore, a recent in vivo study by Stanimirovic Z et al. 2007: (Mutat Res 628:1,10) indicated genotoxic effects of fumagillin. The aim of the present study was to investigate and explain the clastogenic effects of fumagillin (in the form of fumagillin dicyclohexylamine salt) on human peripheral blood lymphocytes in vitro by sister-chromatid exchanges (SCE), chromosome aberrations (CA), and micronucleus (MN) tests. The mitotic index (MI), proliferation index (PI), and nuclear division index (NDI) were calculated to evaluate the cytotoxic potential of fumagillin. Five concentrations of fumagillin (0.34, 0.68, 1.02, 3.07, and 9.20 ,g/ml) were applied to lymphocyte cultures. All the tested concentrations of fumagillin increased the frequency of SCE per cell significantly (P < 0.001 or P < 0.01) compared with the negative control. A significant (P < 0.001) increase in frequency of structural CA was observed at the three highest concentrations in comparison with the negative control. In addition, the three highest test concentrations increased MN formation and decreased MI, PI, and NDI significantly compared with the negative control. The present results indicate that fumagillin is clastogenic and cytotoxic to cultured human lymphocytes. Environ. Mol. Mutagen., 2008. © 2008 Wiley-Liss, Inc. [source] |