Endosymbiotic Bacteria (endosymbiotic + bacteria)

Distribution by Scientific Domains


Selected Abstracts


Molecular and morphological characterization of the association between bacterial endosymbionts and the marine nematode Astomonema sp. from the Bahamas

ENVIRONMENTAL MICROBIOLOGY, Issue 5 2007
Niculina Musat
Summary Marine nematode worms without a mouth or functional gut are found worldwide in intertidal sandflats, deep-sea muds and methane-rich pock marks, and morphological studies show that they are associated with endosymbiotic bacteria. While it has been hypothesized that the symbionts are chemoautotrophic sulfur oxidizers, to date nothing is known about the phylogeny or function of endosymbionts from marine nematodes. In this study, we characterized the association between bacterial endosymbionts and the marine nematode Astomonema sp. from coral reef sediments in the Bahamas. Phylogenetic analysis of the host based on its 18S rRNA gene showed that Astomonema sp. is most closely related to non-symbiotic nematodes of the families Linhomoeidae and Axonolaimidae and is not closely related to marine stilbonematinid nematodes with ectosymbiotic sulfur-oxidizing bacteria. In contrast, phylogenetic analyses of the symbionts of Astomonema sp. using comparative 16S rRNA gene sequence analysis revealed that these are closely related to the stilbonematinid ectosymbionts (95,96% sequence similarity) as well as to the sulfur-oxidizing endosymbionts from gutless marine oligochaetes. The closest free-living relatives of these gammaproteobacterial symbionts are sulfur-oxidizing bacteria from the family Chromatiaceae. Transmission electron microscopy and fluorescence in situ hybridization showed that the bacterial symbionts completely fill the gut lumen of Astomonema sp., suggesting that these are their main source of nutrition. The close phylogenetic relationship of the Astomonema sp. symbionts to known sulfur-oxidizing bacteria as well as the presence of the aprA gene, typically found in sulfur-oxidizing bacteria, indicates that the Astomonema sp. symbionts use reduced sulfur compounds as an energy source to provide their hosts with nutrition. [source]


HAPLODIPLOIDY AS AN OUTCOME OF COEVOLUTION BETWEEN MALE-KILLING CYTOPLASMIC ELEMENTS AND THEIR HOSTS

EVOLUTION, Issue 4 2004
Benjamin B. Normark
Abstract Haplodiploidy (encompassing both arrhenotoky and paternal genome elimination) could have originated from coevolution between male-killing endosymbiotic bacteria and their hosts. In insects, haplodiploidy tends to arise in lineages that rely on maternally transmitted bacteria for nutrition and that have gregarious broods in which competition between siblings may occur. When siblings compete, there is strong selection on maternally transmitted elements to kill males. I consider a hypothetical bacterial phenotype that renders male zygotes effectively haploid by preventing chromosome decondensation in male-determining sperm nuclei. By causing high male mortality, such a phenotype can be advantageous to the bacterial lineage. By eliminating paternal genes, it can also be advantageous to the host female. A simple model shows that the host female will benefit under a wide range of values for the efficiency of resource re-allocation, the efficiency of transmission, and the viability of haploid males. This hypothesis helps to explain the ecological correlates of the origins of haplodiploidy, as well as such otherwise puzzling phenomena as obligate cannibalism by male Micromalthus beetles, reversion to diploidy by aposymbiotic male stictococcid scale insects, and the bizarre genomic constitution of scale insect bacteriomes. [source]


Ample genetic variation but no evidence for genotype specificity in an all-parthenogenetic host,parasitoid interaction

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2010
C. SANDROCK
Abstract Antagonistic coevolution between hosts and parasites can result in negative frequency-dependent selection and may thus be an important mechanism maintaining genetic variation in populations. Negative frequency-dependence emerges readily if interactions between hosts and parasites are genotype-specific such that no host genotype is most resistant to all parasite genotypes, and no parasite genotype is most infective on all hosts. Although there is increasing evidence for genotype specificity in interactions between hosts and pathogens or microparasites, the picture is less clear for insect host,parasitoid interactions. Here, we addressed this question in the black bean aphid (Aphis fabae) and its most important parasitoid Lysiphlebus fabarum. Because both antagonists are capable of parthenogenetic reproduction, this system allows for powerful tests of genotype × genotype interactions. Our test consisted of exposing multiple host clones to different parthenogenetic lines of parasitoids in all combinations, and this experiment was repeated with animals from four different sites. All aphids were free of endosymbiotic bacteria known to increase resistance to parasitoids. We observed ample genetic variation for host resistance and parasitoid infectivity, but there was no significant host clone × parasitoid line interaction, and this result was consistent across the four sites. Thus, there is no evidence for genotype specificity in the interaction between A. fabae and L. fabarum, suggesting that the observed variation is based on rather general mechanisms of defence and attack. [source]


Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts

MOLECULAR ECOLOGY, Issue 6 2007
S. NODA
Abstract A number of cophylogenetic relationships between two organisms namely a host and a symbiont or parasite have been studied to date; however, organismal interactions in nature usually involve multiple members. Here, we investigated the cospeciation of a triplex symbiotic system comprising a hierarchy of three organisms , termites of the family Rhinotermitidae, cellulolytic protists of the genus Pseudotrichonympha in the guts of these termites, and intracellular bacterial symbionts of the protists. The molecular phylogeny was inferred based on two mitochondrial genes for the termites and nuclear small-subunit rRNA genes for the protists and their endosymbionts, and these were compared. Although intestinal microorganisms are generally considered to have looser associations with the host than intracellular symbionts, the Pseudotrichonympha protists showed almost complete codivergence with the host termites, probably due to strict transmissions by proctodeal trophallaxis or coprophagy based on the social behaviour of the termites. Except for one case, the endosymbiotic bacteria of the protists formed a monophyletic lineage in the order Bacteroidales, and the branching pattern was almost identical to those of the protists and the termites. However, some non-codivergent evolutionary events were evident. The members of this triplex symbiotic system appear to have cospeciated during their evolution with minor exceptions; the evolutionary relationships were probably established by termite sociality and the complex microbial community in the gut. [source]