Endophytes

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Endophytes

  • fungal endophyte
  • root endophyte

  • Terms modified by Endophytes

  • endophyte infection

  • Selected Abstracts


    Fungal endophytes from Dioscorea zingiberensis rhizomes and their antibacterial activity

    LETTERS IN APPLIED MICROBIOLOGY, Issue 1 2008
    L. Xu
    Abstract Aims:, The aim of the study was to isolate and characterize the endophytic fungi from the rhizomes of the Chinese traditional medicinal plant Dioscorea zingiberensis and to detect their antibacterial activities. Methods and Results:, After strict sterile sample preparation, nine fungal endophytes were isolated from rhizomes of the Chinese traditional medicinal plant D. zingiberensis. The endophytes were classified by morphological traits and internal transcribed spacer (ITS) rRNA gene sequence analysis. Their ITS rDNA sequences were 99,100% identical to Nectria, Fusarium, Rhizopycnis, Acremonium and Penicillium spp. respectively. Of these, the most frequent genera were Fusarium and Nectria. One isolate, Dzf7, was unclassified on the basis of its low sequence similarity. The next closest species was Alternaria longissima (c. 92·4% sequence similarity). Endophyte isolate Dzf5 showed the closest sequence similarity (c. 99·5%) to an uncultured soil fungus (DQ420800) obtained from Cedar Creek, USA. Bioassays using a modified broth dilution test were used to detect the antibacterial activity of n -butanol extracts of both mycelia and culture filtrates of D. zingiberensis showed biological activity against Bacillus subtilis, Staphylococcus haemolyticus, Escherichia coli and Xanthomonas vesicatoria. Minimal inhibitory concentration (MIC) values of the extracts were between 31·25 ,g ml,1 and 125 ,g ml,1. Conclusions:, Endophytic fungus Dzf2 (c. 99·8% sequence similarity to Fusarium redolens) isolated from D. zingiberensis rhizome showed the most potent antibacterial activities. Significance and Impact of the Study:, Endophytic fungi isolated from D. zingiberensis may be used as potential producers of antibacterial natural products. [source]


    Endophytic root colonization of gramineous plants by Herbaspirillum frisingense

    FEMS MICROBIOLOGY ECOLOGY, Issue 1 2008
    Michael Rothballer
    Abstract Herbaspirillum frisingense is a diazotrophic betaproteobacterium isolated from C4-energy plants, for example Miscanthus sinensis. To demonstrate endophytic colonization unequivocally, immunological labeling techniques using monospecific polyclonal antibodies against two H. frisingense strains and green fluorescent protein (GFP)-fluorescence tagging were applied. The polyclonal antibodies enabled specific in situ identification and very detailed localization of H. frisingense isolates Mb11 and GSF30T within roots of Miscanthus×giganteus seedlings. Three days after inoculation, cells were found inside root cortex cells and after 7 days they were colonizing the vascular tissue in the central cylinder. GFP-tagged H. frisingense strains could be detected and localized in uncut root material by confocal laser scanning microscopy and were found as endophytes in cortex cells, intercellular spaces and the central cylinder of barley roots. Concerning the production of potential plant effector molecules, H. frisingense strain GSF30T tested positive for the production of indole-3-acetic acid, while Mb11 was shown to produce N -acylhomoserine lactones, and both strains were able to utilize 1-aminocyclopropane-1-carboxylate (ACC), providing an indication of the activity of an ACC-deaminase. These results clearly present H. frisingense as a true plant endophyte and, although initial greenhouse experiments did not lead to clear plant growth stimulation, demonstrate the potential of this species for beneficial effects on the growth of crop plants. [source]


    Alkaloids may not be responsible for endophyte-associated reductions in tall fescue decomposition rates

    FUNCTIONAL ECOLOGY, Issue 2 2010
    Jacob A. Siegrist
    Summary 1. ,Fungal endophyte , grass symbioses can have dramatic ecological effects, altering individual plant physiology, plant and animal community structure and function, and ecosystem processes such as litter decomposition and nutrient cycling. 2. ,Within the tall fescue (Schedonorus arundinaceus) , fungal endophyte (Neotyphodium coenophialum) symbiosis, fungal produced alkaloids are often invoked as the putative mechanism driving these ecological responses. Yet few measurements of alkaloids exist in the ecological literature. In this study, we quantified alkaloid levels in live, standing dead and decomposing endophyte-infected (E+) and ,free (E,) plant material and simultaneously evaluated the direct and indirect effects of endophyte presence on tall fescue decomposition. 3. ,Loline and ergot alkaloid levels were consistently high in live E+ (common toxic strain of N. coenophialum) tall fescue biomass throughout the sampling period (May,November 2007), whereas, E, live and standing dead material had non-detectable alkaloid concentrations. Standing dead E+ biomass had significantly reduced alkaloid levels (6,19x lower than the levels measured in the corresponding live E+ biomass) that were equivalent to E, live and dead for loline but were still somewhat higher than E, material for ergots. 4. ,In an effort to test the role of alkaloids in directly inhibiting decomposition, as has been suggested by previous studies, we conducted a litter bag experiment using green, alkaloid-laden E+ and alkaloid-free E, tall fescue plant material. We incubated E+ and E, litter bags in both E+ and E, tall fescue stands for 170 days, and measured mass loss, carbon and nitrogen content, and ergot and loline alkaloid concentrations over the incubation period. 5. ,Consistent with previous reports, both direct and indirect effects of endophyte presence on litter decomposition were observed: endophyte presence in the litter and surrounding microenvironment significantly reduced decomposition rates. Surprisingly, despite large differences in alkaloid content between E+ and E, litter from Day 0,Day 21 of the incubation, direct effects of the endophyte on litter decomposition, while significant, were relatively small (differences in mass loss between E+ and E, litter were never >3%). Alkaloids were gone from E+ material by day 56. 6. ,We propose that results from this study indicating alkaloids are largely absent in standing dead material (the typical input to the decomposition process), and that despite being present in our litter bag experiment, failed to produce large differences in mass loss between E+ and E, material questions the supposition that fungal produced alkaloids directly inhibit decomposition. Additional studies exploring the mechanisms behind the direct and indirect effects of endophytes on this ecosystem process are needed. [source]


    Effect of drought on the growth of Lolium perenne genotypes with and without fungal endophytes

    FUNCTIONAL ECOLOGY, Issue 6 2000
    G. P. Cheplick
    Abstract 1Grass leaves are often inhabited by fungal endophytes that can enhance host growth. In some forage species, endophytes improve host resistance to, and recovery from, drought. 2Our objective was to determine if the growth of genotypes of Lolium perenne L. was improved by endophytes during recovery from drought. 3Thirteen infected genotypes were cloned into ramets. Half were treated with a systemic fungicide to eliminate the endophyte (E,); half were untreated and retained high endophyte levels (E+). In a glasshouse, half of all E, and E+ ramets were watered regularly, whilst half were exposed to a 2 week drought on two occasions, each followed by a 3 week recovery period. 4After the first drought and recovery period, endophytes significantly reduced tiller production in the drought-stressed group. 5After the second drought and recovery period, effects of drought on live leaf area and dry mass were highly dependent on host genotype, but not endophytes. The mean tiller mass of E+ ramets after drought was significantly less than that of watered E+ ramets, but this was not true in E, ramets. For six genotypes there was greater mass allocation to storage in the tiller bases of E, ramets after drought. 6This perennial ryegrass population showed marked genotypic variation in the ability to recover from drought stress, but endophytes played little or no role in this ability. For some host genotypes there may be a metabolic cost of harbouring endophytes during environmentally stressful conditions. [source]


    Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae

    GLOBAL CHANGE BIOLOGY, Issue 6 2007
    XIN CHEN
    Abstract Both endophytic and mycorrhizal fungi interact with plants to form symbiosis in which the fungal partners rely on, and sometimes compete for, carbon (C) sources from their hosts. Changes in photosynthesis in host plants caused by atmospheric carbon dioxide (CO2) enrichment may, therefore, influence those mutualistic interactions, potentially modifying plant nutrient acquisition and interactions with other coexisting plant species. However, few studies have so far examined the interactive controls of endophytes and mycorrhizae over plant responses to atmospheric CO2 enrichment. Using Festuca arundinacea Schreb and Plantago lanceolata L. as model plants, we examined the effects of elevated CO2 on mycorrhizae and endophyte (Neotyphodium coenophialum) and plant nitrogen (N) acquisition in two microcosm experiments, and determined whether and how mycorrhizae and endophytes mediate interactions between their host plant species. Endophyte-free and endophyte-infected F. arundinacea varieties, P. lanceolata L., and their combination with or without mycorrhizal inocula were grown under ambient (400 ,mol mol,1) and elevated CO2 (ambient + 330 ,mol mol,1). A 15N isotope tracer was used to quantify the mycorrhiza-mediated plant acquisition of N from soil. Elevated CO2 stimulated the growth of P. lanceolata greater than F. arundinacea, increasing the shoot biomass ratio of P. lanceolata to F. arundinacea in all the mixtures. Elevated CO2 also increased mycorrhizal root colonization of P. lanceolata, but had no impact on that of F. arundinacea. Mycorrhizae increased the shoot biomass ratio of P. lanceolata to F. arundinacea under elevated CO2. In the absence of endophytes, both elevated CO2 and mycorrhizae enhanced 15N and total N uptake of P. lanceolata but had either no or even negative effects on N acquisition of F. arundinacea, altering N distribution between these two species in the mixture. The presence of endophytes in F. arundinacea, however, reduced the CO2 effect on N acquisition in P. lanceolata, although it did not affect growth responses of their host plants to elevated CO2. These results suggest that mycorrhizal fungi and endophytes might interactively affect the responses of their host plants and their coexisting species to elevated CO2. [source]


    The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought

    GLOBAL CHANGE BIOLOGY, Issue 11 2004
    Philip L. Staddon
    Abstract Plantago lanceolata plants were grown under various environmental conditions in association with the mycorrhizal fungi Glomus mosseae, G. caledonium and a fine endophyte either individually or all together. Using a time-course approach, we investigated the effects of elevated atmospheric CO2 (eCO2), soil warming and drought and their interactions on root length colonized (RLC) by mycorrhizal fungi and extraradical mycorrhizal hyphal (EMH) production. Plant growth responded as would be expected to the environmental manipulations. There was no plant growth-independent effect of eCO2 on mycorrhizal colonization; however, EMH production was stimulated by eCO2, i.e. there was increased partitioning of below-ground carbon to the EMH. Soil warming directly stimulated both percent RLC by the Glomus species and EMH density; soil warming did not affect RLC by the fine endophyte. Drought decreased percent RLC for the fine endophyte, but not for the Glomus species. The presence of one mycorrhizal fungus did not affect the response of another to the environmental variables. There was no evidence of any interactive effects of the environmental variables on RLC, but there were significant environmental interactions on EMH production. In particular, the stimulatory effects of eCO2 and soil warming on EMH density were not additive. The results are discussed in terms of the soil carbon cycle, highlighting some crucial gaps in our knowledge. If future environmental changes affect mycorrhizal fungal turnover and respiration, then this could have important implications for the terrestrial carbon cycle. [source]


    Fungal endophytes reduce regrowth and affect competitiveness of meadow fescue in early succession of pastures

    GRASS & FORAGE SCIENCE, Issue 3 2010
    S. Saari
    Abstract Systemic- and seed-transmitted fungal endophytes are suggested to enhance competitive dominance of agronomic grasses by increasing plant growth and defence against herbivores. We studied whether Neotyphodium uncinatum endophyte infection frequencies of meadow fescue (Schedonorus pratensis) and botanical composition of pastures are affected by 4, 5, 7 and 21 years of grazing by dairy cattle. We then examined with one greenhouse and two field experiments, whether endophyte infection and clipping affect regrowth of young or mature plants relative to nutrient availability in soil. The frequencies of infected plants and the number of plant species were less in grazed parts of the pastures. Endophytes significantly reduced relative regrowth and dry biomass of regrowth of the grass irrespective of nutrient levels in a 1-year-old field (on an average 18% in 2 months) and under high nutrient conditions in the greenhouse experiment (on an average 3% in 3 months) respectively. However, effects of endophytes were not detected in 5-year-old fields and under low nutrient conditions in the greenhouse. In contrast to past studies, our results demonstrate that grazing may negatively affect endophyte,grass symbiosis and number of plant species of successional pastures, and suggest that the effects of endophytes may be linked to the ontogeny of the host. [source]


    Fungal alkaloids in populations of endophyte-infected Festuca rubra subsp. pruinosa

    GRASS & FORAGE SCIENCE, Issue 3 2007
    B. R. Vázquez-de-Aldana
    Abstract Festuca rubra subsp. pruinosa is a grass that grows on coastal cliffs along the Atlantic coast of Europe. Asymptomatic plants of this species are systemically infected by the fungal endophyte Epichloë festucae. It is not known whether the alkaloids, ergovaline and peramine, are produced by the endophyte in F. rubra subsp. pruinosa. Plants from four populations were collected from the northern coast of Galicia (Spain) and examined for the presence of fungal endophytes. Ergovaline and peramine concentrations were analysed over two consecutive years, at two plant growth stages, and in different types of plant tissues. Infected plants of F. rubra subsp. pruinosa contained ergovaline but not peramine. Ergovaline was detected in 0·80 of the plants, with concentrations ranging from 0·05 to 1·9 ,g g,1 dry matter. The differences in ergovaline concentration between different types of plant tissues (vegetative and reproductive), plant populations and sampling dates were not statistically significant. [source]


    Contrasting infection frequencies of Neotyphodium endophyte in naturalized Italian ryegrass populations in Japanese farmlands

    GRASSLAND SCIENCE, Issue 2 2010
    Masayuki Yamashita
    Abstract Neotyphodium endophytes often confer benefits to their host grasses and may enhance invasiveness of some grasses. The knowledge of infection frequencies of endophytes among invading weed populations is necessary to understand the relationships between endophyte infection and invasiveness. Here we present data on infection frequencies of Italian ryegrass (Lolium multiflorum Lam.), an important weed in some farmlands in Japan, persisting in contrasting farmlands: a terraced paddy field and a wheat-soybean double-cropped field in the western region of Shizuoka prefecture, Japan. The terraced paddy site is a mosaic of several landscape elements such as paddy fields, levees, fallow and abandoned fields, with a high percentage of non-crop area. Rice (Oryza sativa L.) has been cultivated for more than a decade with no application of chemical fertilizers, pesticides and fungicides. The wheat-soybean field is characterized by the aggregation of large-scaled fields that were originally reconstructed paddy fields, showing a low percentage of non-crop area. Wheat and soybean have been grown as winter and summer crops, respectively, using chemical fertilizers and herbicides. We examined the presence or absence of endophytes in a total of 1200 seeds sampled from the two Italian ryegrass populations. The terraced paddy population exhibited a markedly high infection frequency (91.0%), due possibly to selective feeding of non-infected seeds by insects. In contrast, the wheat-soybean farmland population showed almost no infection (1.1%), whereas the putative source of the invasion in the proximity exhibited a relatively high infection rate (64.4%). Such a micro-scale variation in infection frequencies may be attributable to a loss in endophyte viability within the wheat-soybean field. The findings suggest that endophyte infection frequency may markedly differ among the Italian ryegrass populations even within the same region, presumably depending on the abundance of the seed-eating insects, farmland management regimes and/or environmental conditions such as soil humidity. [source]


    Neotyphodium endophyte infection affects the performance of tall fescue in temperate region Andisols

    GRASSLAND SCIENCE, Issue 1 2006
    M. Hasinur Rahman
    Abstract A pot experiment was conducted for 75 days to observe the effect of Neotyphodium coenophialum endophyte on three tall fescue (Festuca arundinacea Schreb.) ecotypes grown in two Andisols viz. Black Andisol and Red Andisol. Black Andisol with a naturally low content of P was high in other nutrients such as N, K, while Red Andisol, with a naturally high content of P, was low in other nutrients. Tiller number, plant height, chlorophyll content, shoot dry weight and agronomic efficiency of water use (WUEag) showed higher values in endophyte-infected (E+) plants than noninfected (E,) plants. Plants growing in Black Andisol performed better than those in Red Andisol. Among the three tall fescue ecotypes, one of them (ecotype Showa) had the best performance regardless of soils and endophyte infection. When considering the effect of endophyte infection in different soil conditions, higher WUEag was observed in endophyte-infected plants grown in Black Andisol. Endophyte infection significantly enhanced all plant parameters in Black Andisol but they were reduced in Red Andisol. Our results indicate that infected plants grew better in soil that was naturally low in P whereas uninfected plants had increased vegetative growth in soil that was naturally high in P. In nutrient poor soil with comparatively high P content (Red Andisol) the cost of endophyte infection may override its benefit. The presence of endophyte had a variable impact on plant performance and the effect of endophyte varied with ecotype of grass it infected into. [source]


    Environmental stresses mediate endophyte,grass interactions in a boreal archipelago

    JOURNAL OF ECOLOGY, Issue 2 2010
    Nora M. Saona
    Summary 1.,Both evolutionary theory and empirical evidence from agricultural research support the view that asexual, vertically transmitted fungal endophytes are typically plant mutualists that develop high infection frequencies within host grass populations. In contrast, endophyte,grass interactions in natural ecosystems are more variable, spanning the range from mutualism to antagonism and comparatively little is known about their range of response to environmental stress. 2.,We examined patterns in endophyte prevalence and endophyte,grass interactions across nutrient and grazing (from Greylag and Canada geese) gradients in 15 sites with different soil moisture levels in 13 island populations of the widespread grass Festuca rubra in a boreal archipelago in Sweden. 3.,In the field, endophyte prevalence levels were generally low (range = 10,53%) compared with those reported from agricultural systems. Under mesic-moist conditions endophyte prevalence was constantly low (mean prevalence = 15%) and was not affected by grazing pressure or nutrient availability. In contrast, under conditions of drought, endophyte prevalence increased from 10% to 53% with increasing nutrient availability and increasing grazing pressure. 4.,In the field, we measured the production of flowering culms, as a proxy for host fitness, to determine how endophyte-infected plants differed from uninfected plants. At dry sites, endophyte infection did not affect flowering culm production. In contrast, at mesic-moist sites production of flowering culms in endophyte-infected plants increased with the covarying effects of increasing nutrient availability and grazing pressure, indicating that the interaction switched from antagonistic to mutualistic. 5.,A concurrent glasshouse experiment showed that in most situations, the host appears to incur some costs for harbouring endophytes. Uninfected grasses generally outperformed infected grasses (antagonistic interaction), while infected grasses outperformed uninfected grasses (mutualistic interaction) only in dry, nutrient-rich conditions. Nutrient and water addition affected tiller production, leaf number and leaf length differently, suggesting that tillers responded with different strategies. This emphasizes that several response variables are needed to evaluate the interaction. 6.,Synthesis. This study found complex patterns in endophyte prevalence that were not always correlated with culm production. These contrasting patterns suggest that the direction and strength of selection on infected plants is highly variable and depends upon a suite of interacting environmental variables that may fluctuate in the intensity of their impact, during the course of the host life cycle. [source]


    Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers

    MOLECULAR ECOLOGY, Issue 7 2001
    Michael M. Müller
    Abstract The diversity of endophytic fungi within single symptomless Norway spruce needles is described and their possible role as pioneer decomposers after needle detachment is investigated. The majority (90%) of all 182 isolates from green intact needles were identified as Lophodermium piceae. Up to 34 isolates were obtained from single needles. Generally, all isolates within single needles had distinct randomly amplified microsatellite (RAMS) patterns. Single trees may thus contain a higher number of L. piceae individuals than the number of their needles. To investigate the ability of needle endophytes to act as pioneer decomposers, surface-sterilized needles were incubated on sterile sand inoculated with autoclaved or live spruce forest humus layer. The dry weight loss of 13,17% found in needles after a 20-week incubation did not significantly differ between the sterilized and live treatments. Hence, fungi surviving the surface sterilization of needles can act as pioneer decomposers. A considerable portion of the needles remained green during the incubation. Brown and black needles, in which the weight loss had presumably taken place, were invaded throughout by single haplotypes different from L. piceae. Instead, Tiarasporella parca, a less common needle endophyte, occurred among these invaders of brown needles. Needle endophytes of Norway spruce seem thus to have different abilities to decompose host tissues after needle cast. L. piceae is obviously not an important pioneer decomposer of Norway spruce needles. The diversity of fungal individuals drops sharply when needles start to decompose. Thus, in single needles the decomposing mycota is considerably less diverse than the endophytic mycota. [source]


    NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass

    MOLECULAR MICROBIOLOGY, Issue 5 2008
    Aiko Tanaka
    Summary Small GTPases of the Rac group play a key regulatory role in NADPH oxidase catalysed production of reactive oxygen species (ROS) in mammals and plants, but very little evidence is available for a corresponding role in fungi. We recently showed that ROS produced by a specific fungal NADPH oxidase isoform, NoxA, are crucial in regulating hyphal morphogenesis and growth in the mutualistic symbiotic interaction between Epichloë festucae and perennial ryegrass. We demonstrate here that E. festucae RacA is required for NoxA activation and regulated production of ROS to maintain a symbiotic interaction. Deletion of racA resulted in decreased ROS production, reduction of radial growth and hyper-branching of the hyphae in culture. In contrast, in planta the racA mutant showed extensive colonization of the host plant, resulting in stunting and precocious senescence of the host plants. Strains expressing a dominant active (DA) allele of RacA had increased ROS production, increased aerial hyphae and reduced radial growth. These results demonstrate that RacA plays a crucial role in regulating ROS production by NoxA, in order to control hyphal morphogenesis and growth of the endophyte in planta. [source]


    Are endophytic fungi defensive plant mutualists?

    OIKOS, Issue 1 2002
    Stanley H. Faeth
    Endophytic fungi, especially asexual, systemic endophytes in grasses, are generally viewed as plant mutualists, mainly through the action of mycotoxins, such as alkaloids in infected grasses, which protect the host plant from herbivores. Most of the evidence for the defensive mutualism concept is derived from studies of agronomic grass cultivars, which may be atypical of many endophyte-host interactions. I argue that endophytes in native plants, even asexual, seed-borne ones, rarely act as defensive mutualists. In contrast to domesticated grasses where infection frequencies of highly toxic plants often approach 100%, natural grass populations are usually mosaics of uninfected and infected plants. The latter, however, usually vary enormously in alkaloid levels, from none to levels that may affect herbivores. This variation may result from diverse endophyte and host genotypic combinations that are maintained by changing selective pressures, such as competition, herbivory and abiotic factors. Other processes, such as spatial structuring of host populations and endophytes that act as reproductive parasites of their hosts, may maintain infection levels of seed-borne endophytes in natural populations, without the endophyte acting as a mutualist. [source]


    Patterns of Interaction between Populus Esch5 and Piriformospora indica: A Transition from Mutualism to Antagonism

    PLANT BIOLOGY, Issue 2 2005
    M. Kaldorf
    Abstract: Piriformospora indica (Sebacinaceae, Basidiomycota) is an axenically cultivable, plant growth promoting root endophyte with a wide host range, including Populus. Rooting of Populus Esch5 explants started within 6 days after transfer to WPM medium. If such plantlets with roots were inoculated with P. indica, there was an increase in root biomass, and the number of 2nd order roots was increased significantly. A totally different observation was recorded when the explants were placed into WPM with pre-grown P. indica. The interaction led to complete blocking of root production and severely inhibited plant growth. Additionally, branched aerial roots appeared which did not penetrate the medium. On contact with the fungal colony or the medium, the ends of the aerial roots became inflated. Prolonged incubation stimulated the fungus to colonize aerial parts of the plant (stem and leaves). Mycelium not only spread on the surface of the aerial parts, but also invaded the cortical tissues inter- and intracellularly. Detached Populus leaves remained vital for 4 - 5 weeks on sterile agar media or on AspM medium with pre-grown P. indica. When the fungus was pre-grown on culture media such as WPM, containing ammonium as the main source of nitrogen, leaves in contact with the cultures turned brownish within 4 - 12 h. Thereafter, the leaves bleached, and about one day later had become whitish. Thus, cultural conditions could alter the behaviour of the fungus drastically: the outcome of the interaction between plant and fungus can be directed from mutualistic to antagonistic, characterized by fungal toxin formation and extension of the colonization to Populus shoots. [source]


    Calystegines in Calystegia sepium do not Inhibit Fungal Growth and Invertase Activity but Interact with Plant Invertase

    PLANT BIOLOGY, Issue 2 2004
    D. Höke
    Abstract: Calystegines are alkaloidal glycosidase inhibitors. They accumulate predominantly in young and meristemic parts of Calystegia sepium (Convolvulaceae). C. sepium, bindweed, infests meadows and cereal fields and is difficult to control chemically. Fungal pathogens against C. sepium are established as mycoherbicides. Stagonospora convolvuli LA39 attacks C. sepium and does not affect crop plants, but young plants of C. sepium are less susceptible to the fungus. The interaction of Stagonospora convolvuli with calystegines was investigated. Further, endophytic fungi of several classes were isolated from wild-grown Calystegia sepium leaves, and selected strains were tested for interaction with calystegines. Fungal growth on agar containing calystegines was not affected considerably. Plants in climate chambers were infected with an endophyte, Phomopsis, and with the fungal pathogen, Stagonospora convolvuli. Calystegine levels were measured in infected and non-infected plant tissues. Accumulation depended on developmental stage of the plant tissue and was not influenced by infection. Acid invertase was measured from fungal mycelia and from infected and non-infected plant tissues. Fungal acid invertase activity was not inhibited by 10 mM calystegine B2, while invertase from C. sepium leaves was inhibited. It is concluded that calystegines do not inhibit fungal development and sucrose consumption under the conditions of the present investigation, but may act by redirection of plant carbohydrate metabolism. [source]


    Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production

    PLANT CELL & ENVIRONMENT, Issue 11 2005
    MATHEW G. HUNT
    ABSTRACT Carbon dioxide has been rapidly accumulating in the atmosphere and is expected to continue to do so. This accumulation is presumed to have important direct effects on plant growth. The interacting affects of a small increase in CO2 concentration (466 p.p.m., approximately 30% increase from current ambient conditions), nitrogen fertilization and fungal endophyte (Neotyphodium lolii) infection on the growth and chemical composition of perennial ryegrass (Lolium perenne) were investigated. It was found that dry mass production was approximately 50% greater under elevated CO2 than under ambient CO2, but only in conditions of high soil N. High molecular weight carbohydrates and total carbohydrates (LMW + HMW CHO) depended on an interaction between CO2 and endophyte infection. Infected plants contained significantly more carbohydrate than endophyte-free plants, and the difference was greatest in ambient CO2 conditions. Protein concentrations were also influenced by the interaction between CO2 and endophyte-infection. Endophyte-free plants had 40% lower concentrations of soluble protein under elevated CO2 than under ambient CO2, but this CO2 effect on soluble protein was largely absent in endophyte-infected plants. CO2, endophyte-infection and nitrogen interacted to influence the total chlorophyll concentration of the grass such that chlorophyll concentration was always lower in elevated CO2 but this decline was much greater in endophyte-free plants, particularly in conditions of high soil N. In the endophyte-infected plants, the concentrations of the pyrrolopyrazine alkaloid peramine depended on the interaction between CO2 and N fertilization such that peramine concentrations declined with increasing N at ambient CO2 but remained roughly constant across N levels at elevated CO2. A similar pattern was seen for the ergot alkaloid ergovaline. The biochemical responses of perennial ryegrass to elevated CO2 are clearly modified by the presence of endophytic fungi. [source]


    Dynamics of Neotyphodium endophyte infection in ageing seed pools: incidence of differential viability loss of endophyte, infected seed and non-infected seed

    ANNALS OF APPLIED BIOLOGY, Issue 2 2010
    P.E. Gundel
    Symbiotic associations between grasses and vertically transmitted endophytic fungi are widespread in nature. Within grass populations, changes in the frequency of infected plants are driven by influence of the endophyte on the fitness of their hosts and by the efficiency of endophyte transmission from parent plants to their offspring. During the seed stage, the endophyte might influence the fitness of its host by affecting the rate of seed viability loss, whereas the efficiency of endophyte transmission is affected by losses of viability of the fungus within viable seeds. We assessed the viability losses of Lolium multiflorum seeds with high and low level of infection of the endophyte Neotyphodium occultans, as well as the loss of viability of the fungus itself, under accelerated seed ageing and under field conditions. Starting with high endophyte-infected accessions of L. multiflorum, we produced their low endophyte-infected counterparts by treating seeds with a fungicide, and subsequently multiplying seeds in adjacent plots allowing pollen exchange. In our accelerated ageing experiments, which included three accessions, high endophyte-infected seeds lost viability significantly faster than their low endophyte-infected counterpart, for only one accession. High endophyte-infected seeds of this particular accession absorbed more water than low endophyte-infected seeds. In contrast, the endophyte lost viability within live seeds of all three accessions, as the proportions of viable seeds producing infected seedlings decreased over time. In our field experiment, which included only one accession, high endophyte-infected seed lost viability significantly but only slightly faster than low endophyte-infected seed. In contrast, the loss of viability of the endophyte was substantial as the proportions of viable seeds producing infected seedlings decreased greatly over time. Moving the seeds from the air to the soil surface (simulating seed dispersion off the spikes) decreased substantially the rate of seed viability loss, but increased the rate of endophyte viability loss. Our experiments suggest that, in ageing seed pools, endophyte viability loss and differential seed mortality determine decreases in the proportions of endophyte-infected seeds in L. multiflorum. Endophyte viability loss within live seeds contributes substantially more to infection frequency changes than differential viability losses of infected and non-infected seeds. [source]


    Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease

    ANNALS OF APPLIED BIOLOGY, Issue 3 2009
    J.G. Maciá-Vicente
    Abstract Colonisation of plant roots by endophytic fungi may confer benefits to the host such as protection against abiotic or biotic stresses or plant growth promotion. The exploitation of these properties is of great relevance at an applied level, either to increase yields of agricultural crops or in reforestation activities. Fusarium equiseti is a naturally occurring endophyte in vegetation under stress in Mediterranean ecosystems. Pochonia chlamydosporia is a nematode egg-parasitic fungus with a worldwide distribution. Both fungi have the capacity to colonise roots of non-host plants endophytically and to protect them against phytopathogenic fungi under laboratory conditions. The aim of this study was to evaluate the root population dynamics of these fungi under non-axenic practical conditions. Both fungal species were inoculated into barley roots. Their presence in roots and effects on plant growth and incidence of disease caused by the pathogen Gaeumannomyces graminis var. tritici were monitored periodically. Both fungi colonised barley roots endophytically over the duration of the experiment and competed with other existing fungal root colonisers. Furthermore, colonisation of roots by P. chlamydosporia promoted plant growth. Although a clear suppressive effect on disease could not be detected, F. equiseti isolates reduced the mean root lesion length caused by the pathogen. Results of this work suggest that both F. equiseti and P. chlamydosporia are long-term root endophytes that confer beneficial effects to the host plant. [source]


    Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam

    AUSTRAL ECOLOGY, Issue 1 2005
    Martin M. Vila-Aiub
    Abstract Lolium multiflorum is a successful invader of postagricultural succession in the Inland Pampa grasslands in Argentina, becoming a dominant species in the plant community. Individual plants of this annual species are naturally highly infected with fungal endophytes (Neotyphodium sp.) from early successional stages. We assessed the effect of Neotyphodium infection on the biology of L. multiflorum. We evaluated growth attributes between endophyte infected (E+) and uninfected (E,) plants under non-competitive conditions during the normal growing season. E+ plants produced significantly more vegetative tillers and allocated more biomass to roots and seeds. Although seed germination rates were greater in endophyte free plants, the rate of emergence and the final proportion of emerged seedlings were similar between the biotypes. The greater production of vegetative tillers, and the greater resource allocation to roots and seeds are likely to confer an ecological advantage to E+ plants, thus enabling their dominance over the E, individuals in natural grasslands. [source]


    Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam

    AUSTRAL ECOLOGY, Issue 1 2005
    MARTIN M. VILA-AIUB
    Abstract Lolium multiflorum is a successful invader of postagricultural succession in the Inland Panipa grasslands in Argentina, becoming a dominant species in the plant community. Individual plants of this annual species are naturally highly infected with fungal endophytes (Neotyphodium sp.) from early successional stages. We assessed the effect of Neotyphodium infection on the biology of L. multiflorum. We evaluated growth attributes between endophyte infected (E+) and uninfected (E-) plants under non-competitive conditions during the normal growing season. En+plants produced significantly more vegetative tillers and allocated more biomass to roots and seeds. Although seed germination rates were greater in endophyte free plants, the rate of emergence and the final proportion of emerged seedlings were similar between the biotypes. The greater production of vegetative tillers, and the greater resource allocation to roots and seeds are likely to confer an ecological advantage to E+ plants, thus enabling their dominance over the E- individuals in natural grasslands. [source]


    Cephalosol: An Antimicrobial Metabolite with an Unprecedented Skeleton from Endophytic Cephalosporium acremonium IFB-E007

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 34 2008
    Wei Zhang Dr.
    Abstract Cephalosol (1), a potent antimicrobial secondary metabolite with a new carbon skeleton, was characterized from the culture of Cephalosporium acremonium IFB-E007 that used to reside as an endophyte in Trachelospermum jasminoides (Apocynaceae). Its structure and absolute configuration were unambiguously determined by spectroscopic and computational approaches. [source]


    Variation in the abundance of fungal endophytes in fescue grasses along altitudinal and grazing gradients

    ECOGRAPHY, Issue 3 2007
    Gustaf Granath
    Epichloë festucae, a common fungal symbiont of the genus Festuca (family Poaceae), can provide its host plant with protection against herbivores. However, infection might also be associated with a cost to its host plant. We examined the distribution of Epichloë festucae infection in natural populations of three fescue grasses, Festuca rubra, F. ovina and F. vivipara, on mountains in northern Sweden to determine whether infection frequency varied with reindeer Rangifertarandus grazing pressure and altitude. Two differently-scaled approaches were used: 1) infection frequency was measured at a local scale along ten elevational transects within a ca 400 km2 area and 2) infection frequency was measured on a regional scale along elevational transects on 17 mountains classified as having a history of high or low reindeer grazing pressure. Mean infection frequencies in F. rubra were 10% (vegetative tillers at a local scale), and 23% (flowering culms at a regional scale), and in F. ovina they were 13% (local scale) and 15% (regional scale). Endophyte infection frequency in F. vivipara, was, on average, 12% (local scale) and 37% (regional scale). In F. rubra, infection decreased significantly with increasing altitude at both the local and regional scale, and was positively correlated with grazing pressure. In F. ovina, an opposite trend was found at the regional scale: infection frequency increased significantly with increasing altitude, while no discernible distribution pattern was observed at the local scale. No elevational trends were observed in infection of F. vivipara. These patterns in the distribution of endophyte-infected grasses in non-agricultural ecosystems may be explained by both biotic (grazing) and abiotic factors (altitude). Differences in ecology and life history of the studied grass species may also be of importance for the different results observed among species. [source]


    Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales

    ENVIRONMENTAL MICROBIOLOGY, Issue 12 2009
    Leho Tedersoo
    Summary Mycorrhizosphere microbes enhance functioning of the plant,soil interface, but little is known of their ecology. This study aims to characterize the ascomycete communities associated with ectomycorrhizas in two Tasmanian wet sclerophyll forests. We hypothesize that both the phyto- and mycobiont, mantle type, soil microbiotope and geographical distance affect the diversity and occurrence of the associated ascomycetes. Using the culture-independent rDNA sequence analysis, we demonstrate a high diversity of these fungi on different hosts and habitats. Plant host has the strongest effect on the occurrence of the dominant species and community composition of ectomycorrhiza-associated fungi. Root endophytes, soil saprobes, myco-, phyto- and entomopathogens contribute to the ectomycorrhiza-associated ascomycete community. Taxonomically these Ascomycota mostly belong to the orders Helotiales, Hypocreales, Chaetothyriales and Sordariales. Members of Helotiales from both Tasmania and the Northern Hemisphere are phylogenetically closely related to root endophytes and ericoid mycorrhizal fungi, suggesting their strong ecological and evolutionary links. Ectomycorrhizal mycobionts from Australia and the Northern Hemisphere are taxonomically unrelated to each other and phylogenetically distant to other helotialean root-associated fungi, indicating independent evolution. The ubiquity and diversity of the secondary root-associated fungi should be considered in studies of mycorrhizal communities to avoid overestimating the richness of true symbionts. [source]


    Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races

    ENVIRONMENTAL MICROBIOLOGY, Issue 2 2000
    Margret Engelhard
    Several diazotrophic species of Azoarcus spp. occur as endophytes in the pioneer plant Kallar grass. The purpose of this study was to screen Asian wild rice and cultivated Oryza sativa varieties for natural association with these endophytes. Populations of culturable diazotrophs in surface-sterilized roots were characterized by 16S rDNA sequence analysis, and Azoarcus species were identified by genomic fingerprints. A. indigens and Azoarcus sp. group C were detected only rarely, whereas Azoarcus sp. group D occurred frequently in samples of flooded plants: in 75% of wild rice, 80% of land races of O. sativa from Nepal and 33% of modern cultivars from Nepal and Italy. The putatively endophytic populations of diazotrophs differed with the rice genotype. The diversity of cultured diazotrophs was significantly lower in wild rice species than in modern cultivars. In Oryza officinalis (from Nepal) and O. minuta (from the Philippines), Azoarcus sp. group D were the predominant diazotrophic putative endophytes in roots. In contrast, their number was significantly lower in modern cultivars of O. sativa, whereas numbers and diversity of other diazotrophs, such as Azospirillum spp., Klebsiella sp., Sphingomonas paucimobilis, Burkholderia sp. and Azorhizobium caulinodans, were increased. In land races of O. sativa, the diazotrophic diversity was equally high; however, Azoarcus sp. was found in high apparent numbers. Similar differences in populations were also observed in a culture-independent approach comparing a wild rice (O. officinalis) and a modern-type O. sativa plant: in clone libraries of root-associated nitrogenase (nifH,) gene fragments, the diazotrophic diversity was lower in the wild rice species. New lineages of nifH genes were detected, e.g. one deeply branching cluster within the anf (iron) nitrogenases. Our studies demonstrate that the natural host range of Azoarcus spp. extends to rice, wild rice species and old varieties being preferred over modern cultivars. [source]


    Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2003
    J. W. G. Cairney
    Summary Plants that form ericoid mycorrhizal associations are widespread in harsh habitats. Ericoid mycorrhizal fungal endophytes are a genetically diverse group, and they appear to be able to alleviate certain environmental stresses and so facilitate the establishment and survival of Ericaceae. Some of the fungal taxa that form ericoid mycorrhizas, or at least closely related strains, also form associations with other plant hosts (trees and leafy liverworts). The functional significance of these associations and putative mycelial links between Ericaceae and other plant taxa, however, remain unclear. Evidence from environments that are contaminated by toxic metals indicates that ericoid mycorrhizal fungal endophytes, and in some instances their plant hosts, can evolve resistance to these metals. The apparent ability of these endophytes to develop resistance enables ericoid mycorrhizal plants to colonize polluted soil. This seems to be a major factor in the success of ericoid mycorrhizal taxa in a range of harsh environments. [source]


    Endophytic root colonization of gramineous plants by Herbaspirillum frisingense

    FEMS MICROBIOLOGY ECOLOGY, Issue 1 2008
    Michael Rothballer
    Abstract Herbaspirillum frisingense is a diazotrophic betaproteobacterium isolated from C4-energy plants, for example Miscanthus sinensis. To demonstrate endophytic colonization unequivocally, immunological labeling techniques using monospecific polyclonal antibodies against two H. frisingense strains and green fluorescent protein (GFP)-fluorescence tagging were applied. The polyclonal antibodies enabled specific in situ identification and very detailed localization of H. frisingense isolates Mb11 and GSF30T within roots of Miscanthus×giganteus seedlings. Three days after inoculation, cells were found inside root cortex cells and after 7 days they were colonizing the vascular tissue in the central cylinder. GFP-tagged H. frisingense strains could be detected and localized in uncut root material by confocal laser scanning microscopy and were found as endophytes in cortex cells, intercellular spaces and the central cylinder of barley roots. Concerning the production of potential plant effector molecules, H. frisingense strain GSF30T tested positive for the production of indole-3-acetic acid, while Mb11 was shown to produce N -acylhomoserine lactones, and both strains were able to utilize 1-aminocyclopropane-1-carboxylate (ACC), providing an indication of the activity of an ACC-deaminase. These results clearly present H. frisingense as a true plant endophyte and, although initial greenhouse experiments did not lead to clear plant growth stimulation, demonstrate the potential of this species for beneficial effects on the growth of crop plants. [source]


    Diversity of endophytic bacterial communities in poplar grown under field conditions

    FEMS MICROBIOLOGY ECOLOGY, Issue 2 2008
    Kristina Ulrich
    Abstract Bacterial endophytes may be important for plant health and other ecologically relevant functions of poplar trees. The composition of endophytic bacteria colonizing the aerial parts of poplar was studied using a multiphasic approach. The terminal restriction fragment length polymorphism analysis of 16S rRNA genes demonstrated the impact of different hybrid poplar clones on the endophytic community structure. Detailed analysis of endophytic bacteria using cultivation methods in combination with cloning of 16S rRNA genes amplified from plant tissue revealed a high phylogenetic diversity of endophytic bacteria with a total of 53 taxa at the genus level that included Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The community structure displayed clear differences in terms of the presence and relative proportions of bacterial taxa between the four poplar clones studied. The results showed that the genetic background of the hybrid poplar clones corresponded well with the endophytic community structure. Out of the 513 isolates and 209 clones identified, Actinobacteria, in particular the family Microbacteriaceae, made up the largest fraction of the isolates, whereas the clone library was dominated by Alpha - and Betaproteobacteria. The most abundant genera among the isolates were Pseudomonas and Curtobacterium, while Sphingomonas prevailed among the clones. [source]


    Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods

    FEMS MICROBIOLOGY ECOLOGY, Issue 3 2006
    Monika Götz
    Abstract The composition and relative abundance of endophytic fungi in roots of field-grown transgenic T4-lysozyme producing potatoes and the parental line were assessed by classical isolation from root segments and cultivation-independent techniques to test the hypothesis that endophytic fungi are affected by T4-lysozyme. Fungi were isolated from the majority of root segments of both lines and at least 63 morphological groups were obtained with Verticillium dahliae, Cylindrocarpon destructans, Colletotrichum coccodes and Plectosporium tabacinum as the most frequently isolated species. Dominant bands in the fungal fingerprints obtained by denaturing gradient gel electrophoresis analysis of 18S rRNA gene fragments amplified from total community DNA corresponded to the electrophoretic mobility of the 18S rRNA gene fragments of the three most abundant fungal isolates, V. dahliae, C. destructans and Col. coccodes, but not to P. tabacinum. The assignment of the bands to these isolates was confirmed for V. dahliae and Col. coccodes by sequencing of clones. Verticillium dahliae was the most abundant endophytic fungus in the roots of healthy potato plants. Differences in the relative abundance of endophytic fungi colonizing the roots of T4-lysozyme producing potatoes and the parental line could be detected by both methods. [source]


    Effect of fungicides, endophytes and fungal filtrates on in vitro growth of Spanish isolates of Gremmeniella abietina

    FOREST PATHOLOGY, Issue 4 2007
    O. Santamaría
    Summary The effect of eight fungicides and 15 endophytes isolated from twigs of healthy Pinus halepensis trees on the growth rate of four Spanish isolates of the pathogen Gremmeniella abietina was evaluated in vitro. In the fungicide experiments, four doses of each fungicide tested were added to the growth medium. In the endophyte experiments, dual cultures endophyte-pathogen were paired in Petri dishes. Furthermore, growth of three G. abietina isolates was evaluated on malt agar with pine needle extract amended with filtrates from cultures of endophyte E14, which produced a brownish compound apparently inhibiting G. abietina growth. The results obtained suggested that chlorothalonil and daconil were the most suitable fungicides at low doses to reduce growth of G. abietina isolates from Spain. Four of the endophytes tested in vitro showed strong antagonistic activity against G. abietina and deserve further testing in vivo. The endophyte E14 produced in vitro a brownish compound which almost completely inhibited mycelial growth of G. abietina isolates from Spain. [source]