Home About us Contact | |||
Endemism
Kinds of Endemism Terms modified by Endemism Selected AbstractsUNDERSTANDING THE ORIGINS OF AREAS OF ENDEMISM IN PHYLOGEOGRAPHIC ANALYSES: A REPLY TO BRIDLE ET AL.EVOLUTION, Issue 6 2004Ben J. Evans First page of article [source] The Azores diversity enigma: why are there so few Azorean endemic flowering plants and why are they so widespread?JOURNAL OF BIOGEOGRAPHY, Issue 1 2010Mark A. Carine Abstract Aim, Endemism in the flora of the Azores is high (33%) but in other respects, notably the paucity of evolutionary radiations and the widespread distribution of most endemics, the flora differs markedly from the floras of the other Macaronesian archipelagos. We evaluate hypotheses to explain the distinctive patterns observed in the Azorean endemic flora, focusing particularly on comparisons with the Canary Islands. Location, Azores archipelago. Methods, Data on the distribution and ecology of Azorean endemic flowering plants are reviewed to ascertain the incidence of inter-island allopatric speciation and adaptive, ecological speciation. These are contrasted with patterns for the Canary Islands. Patterns of endemism in the Azores and Canaries are further investigated in a phylogenetic context in relation to island age. beast was used to analyse a published molecular dataset for Pericallis (Asteraceae) and to investigate the relative ages of Azorean and Canarian lineages. Results, There are few examples of inter-island allopatric speciation in the Azorean flora, despite the considerable distances between islands and sub-archipelagos. In contrast, inter-island allopatric speciation has been an important process in the evolution of the Canary Islands flora. Phylogenetic data suggest that Azorean endemic lineages are not necessarily recent in origin. Furthermore, in Pericallis the divergence of the Azorean endemic lineage from its closest relative pre-dates the radiation of a Canarian herbaceous clade by inter-island allopatric speciation. Main conclusions, The data presented do not support suggestions that hypotheses pertaining to island age, age of endemic lineages and ecological diversity considered individually explain the lack of radiations and the widespread distribution of Azorean endemics. We suggest that palaeoclimatic variation, a factor rarely considered in macroecological studies of island diversity patterns, may be an important factor. Palaeoclimatic data suggest frequent and abrupt transitions between humid and arid conditions in the Canaries during the late Quaternary, and such an unstable climate may have driven the recent diversification of the flora by inter-island allopatric speciation, a process largely absent from the climatically more stable Azores. Further phylogenetic/phylogeographic analyses are necessary to determine the relative importance of palaeoclimate and other factors in generating the patterns observed. [source] Distribution and species richness of woody dryland legumes in Baja California, MexicoJOURNAL OF VEGETATION SCIENCE, Issue 4 2003Pedro P. Garcillán Wiggins (1980); Hickman (1993); Skinner & Pavlik (1994); International Legume Database & Information Service, http://www.ildis.org/legumes.html Abstract. We analysed the biogeographic patterns of woody legumes in the Baja California peninsula, NW Mexico. From the specimen labels of eight herbaria, we digitized 4205 records from 78 species, and projected them onto a grid of 205 cartographic cells (20' longitude × 15' latitude). Most species followed distribution patterns that coincide with floristic subdivisions of the peninsula. Endemism is high, reaching 60,70% in the centre of the peninsula, where the driest deserts are found and where significant floristic changes took place during Pleistocene glacial events. The number of cartographic cells (i.e. their geographic ranges) were log-normally distributed, as has been reported for many other taxa. Floristic richness was found to be clumped around some cells where the observed richness is significantly higher than could be expected from chance variation. We tested the hypothesis that these ,hotspots' could be attributable to great collection efforts or to large land surfaces, but we still found 16 cells where richness is significantly high once these two factors are accounted for. Species richness and micro-endemism increase towards the south, conforming to Rapoport's rule that predicts that species ranges become smaller towards the equator while richness increases. The floristic hotspots for woody legumes in Baja California occur in the Cape Region and along the Sierra de la Giganta in the southern Gulf Coast, where 77% of the total peninsular legume flora can be found. These hotspots are mostly unprotected, and should be considered priority areas for future conservation efforts. [source] Endemism and cryptogenesis in ,segmented' mites: A review of Australian Alicorhagiidae, Terpnacaridae, Oehserchestidae and Grandjeanicidae (Acari: Sarcoptiformes)AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 3 2001David Evans Walter Abstract Endeostigmata are early derivative acariform mites, fossils of which are known from the Devonian. Extant species bear numerous plesiomorphies, the most striking being remnant opisthosomal segmentation. Also, many are all-female parthenogens with broad geographical distributions. Many of the species reported in the present study may represent clones of ancient Gondwana species. Before the present study only a handful of endeostigmatans had been reported from Australia. A key to the families of Endeostigmata is provided in the present paper, along with a review of the Australian fauna of the families Alicorhagiidae (new record), Grandjeanicidae (new record), Oehserchestidae (new record), and Terpnacaridae. Terpnacarus gibbosus (Womersley) is redescribed. A report of the first records of the cosmopolitan parthenogens Alicorhagia usitata Theron et al., Alycosmesis palmata (Oudemans), Stigmalychus veretrum Theron et al., Terpnacarus carolinaensis Theron, and Oehserchestes arboriger (Theron) in Australia is provided, along with a description of the new species Grandjeanicus theroni (Grandjeanicidae). Terpnacarus variolus Shiba and T. glebulentus Theron are junior synonyms of T. gibbosus. [source] Can distribution models help refine inventory-based estimates of conservation priority?DIVERSITY AND DISTRIBUTIONS, Issue 4 2010A case study in the Eastern Arc forests of Tanzania, Kenya Abstract Aim, Data shortages mean that conservation priorities can be highly sensitive to historical patterns of exploration. Here, we investigate the potential of regionally focussed species distribution models to elucidate fine-scale patterns of richness, rarity and endemism. Location, Eastern Arc Mountains, Tanzania and Kenya. Methods, Generalized additive models and land cover data are used to estimate the distributions of 452 forest plant taxa (trees, lianas, shrubs and herbs). Presence records from a newly compiled database are regressed against environmental variables in a stepwise multimodel. Estimates of occurrence in forest patches are collated across target groups and analysed alongside inventory-based estimates of conservation priority. Results, Predicted richness is higher than observed richness, with the biggest disparities in regions that have had the least research. North Pare and Nguu in particular are predicted to be more important than the inventory data suggest. Environmental conditions in parts of Nguru could support as many range-restricted and endemic taxa as Uluguru, although realized niches are subject to unknown colonization histories. Concentrations of rare plants are especially high in the Usambaras, a pattern mediated in models by moisture indices, whilst overall richness is better explained by temperature gradients. Tree data dominate the botanical inventory; we find that priorities based on other growth forms might favour the mountains in a different order. Main conclusions, Distribution models can provide conservation planning with high-resolution estimates of richness in well-researched areas, and predictive estimates of conservation importance elsewhere. Spatial and taxonomic biases in the data are essential considerations, as is the spatial scale used for models. We caution that predictive estimates are most uncertain for the species of highest conservation concern, and advocate using models and targeted field assessments iteratively to refine our understanding of which areas should be prioritised for conservation. [source] Investigating the evolution of floras: problems and progress , An introductionDIVERSITY AND DISTRIBUTIONS, Issue 1 2006H. P. Linder ABSTRACT The Cape flora of southern Africa is a remarkable hotspot for plant species diversity and endemism. At a meeting in Zurich in 2004 progress in understanding the evolution of this diversity was reviewed. In this symposium, four papers presenting several of the methods used in this investigation were reported. These papers deal with molecular dating methods, the reconstruction of ancestral habitats, with possible speciation scenarios for the Cape flora, and the importance of the correct sampling strategies. [source] Climatic stress, food availability and human activity as determinants of endemism patterns in the Mediterranean region: the case of dung beetles (Coleoptera, Scarabaeoidea) in the Iberian PeninsulaDIVERSITY AND DISTRIBUTIONS, Issue 5 2002José R. Verdú Abstract. A study to assess the influence of abiotic (climatic conditions) and biotic factors (food resources, habitat preference and human activity) on endemism patterns of dung beetles in the Mediterranean region was conducted in the Iberian Peninsula and the Balearic Islands. The Thermicity Index (It), the Mediterraneity Index (Im3) and the Aridity Index (Ia) were used to assess the influence of abiotic factors. Relative rabbit density (DR), the proportion of landscape used historically for grazing by sheep and goats and the nature of the food resource were used to assess the influence of biotic factors. Relative endemism (EN) of dung beetle assemblages was positively and significantly related with all of the factors considered. However, the Aridity and Mediterraneity Indices are the best predictors of EN. The predicted endemism (EN = 0.017 Ia + 0.004 Im3 + 0.422) was highly positively and significantly related with the observed endemism. Dung beetle assemblages with the highest relative endemism were observed in the south-eastern part of the Iberian Peninsula. This distribution corresponded to the highest Aridity and Mediterraneity. In contrast, dung beetle assemblages with lower endemism were located in more humid and temperate areas. Assemblages of dung beetles with the highest endemism comprise many species adapted to aridity and the exploitation of dry dung pellets. Conservation of traditional grazing activity by pellet-dropping sheep and goats might benefit the maintenance of dung beetle biodiversity in Mediterranean ecosystems. [source] Species richness of helminth parasites in Mexican amphibians and reptilesDIVERSITY AND DISTRIBUTIONS, Issue 4 2002Gerardo Pérez-Ponce de León Abstract. Amphibians and reptiles represent an important group of vertebrates in Mexico; on a global scale 10% of the biodiversity of these groups is found in the country, attaining extraordinarily high levels of endemism (60.7% and 53.7%, respectively). However, fewer than 20% of the known species of amphibians and reptiles in Mexico have been surveyed for helminths, so the inventory is far from complete. We assembled a data base that includes a total of 1246 records (entries) of which 460 correspond to helminths in amphibians and 786 to helminths in reptiles. In total, only 41 species of amphibians (14% of those occurring in Mexico) and only 118 species of reptiles (17% of those occurring in Mexico) have been studied for helminth parasites. From amphibians, 119 species of helminths belonging to 60 genera have been recorded, while 239 species of helminths representing 113 genera have been described from Mexican reptiles. One feature of the distribution of helminths of Mexican amphibians and reptiles is its asymmetry, as seen in representation of helminth groups, host groups and geographical range. However, such statistical asymmetry might be an artefact of sampling effort. Based on our data, we estimate that if all the herpetofauna of Mexico could be studied in the following years, approximately 827 additional species of helminths from amphibians and approximately 1403 from reptiles would be described. [source] Biogeographical patterns of endemic terrestrial Afrotropical birdsDIVERSITY AND DISTRIBUTIONS, Issue 3 2002H. M. De Klerk Abstract. Biogeographical zones are described for terrestrial bird species endemic to the Afrotropics using up-to-date distributional data and multivariate statistical techniques. This provides an objective basis for a hierarchy of subregions, provinces and districts, based on a set of rules. Results are compared to previous studies at continental and regional scales. Biogeographical zones for passerines and non-passerines are compared and found to be similar. Peaks of species richness and narrow endemism are described for the six major subdivisions (subregions) identified by the cluster analysis. Coincidence of peaks of species richness and narrow endemism is found to be low, such that areas selected to represent high species richness tallies will often fail to represent narrow endemics. Strong regionalization of Afrotropical birds indicates the need to use a biogeographical framework in conservation priority setting exercises to ensure that unique, but species-poor, avifaunas are not neglected. [source] Biodiverse, a tool for the spatial analysis of biological and related diversityECOGRAPHY, Issue 4 2010Shawn W. Laffan Biodiverse is a tool for the spatial analysis of diversity using indices based on taxonomic, phylogenetic and matrix (e.g. genetic dissimilarity) relationships. The explosion in georeferenced biological specimen and survey data means there is an increasing need for such tools. Biodiverse supports four processes: 1) linked visualisation of data distributions in geographic, taxonomic, phylogenetic and matrix spaces; 2) spatial moving window analyses including richness, endemism, phylogenetic diversity and beta diversity; 3) spatially constrained agglomerative cluster analyses; and 4) randomisations for hypothesis testing. Biodiverse is open-source and supports user developed extensions. It can be used both through a graphical user interface and scripts. Biodiverse can be downloaded from Integrating highly diverse invertebrates into broad-scale analyses of cross-taxon congruence across the PalaearcticECOGRAPHY, Issue 6 2009Andreas Schuldt Our knowledge on broad-scale patterns of biodiversity, as a basis for biogeographical models and conservation planning, largely rests upon studies on the spatial distribution of vertebrates and plants, neglecting large parts of the world's biodiversity. To reassess the generality of these patterns and better understand spatial diversity distributions of invertebrates, we analyzed patterns of species richness and endemism of a hyperdiverse insect taxon, carabid beetles (ca 11 000 Palaearctic species known), and its cross-taxon congruence with well-studied vertebrates (amphibians, reptiles) and plants across 107,units of the Palaearctic. Based on species accumulation curves, we accounted for completeness of the carabid data by separately examining the western (well-sampled) and eastern (partly less well-sampled) Palaearctic and China (deficient data). For the western Palaearctic, we highlight overall centers of invertebrate, vertebrate and plant diversity. Species richness and endemism of carabids were highly correlated with patterns of especially plant and amphibian diversity across large parts of the Palaearctic. For the well-sampled western Palaearctic, hotspots of diversity integrating invertebrates were located in Italy, Spain and Greece. Only analysis of Chinese provinces yielded low congruence between carabids and plants/vertebrates. However, Chinese carabid diversity is only insufficiently known and China features the highest numbers of annual new descriptions of carabids in the Palaearctic. Even based on the incomplete data, China harbors at least 25% of all Palaearctic carabid species. Our study shows that richness and endemism patterns of highly diverse insects can exhibit high congruence with general large scale patterns of diversity inferred from plants/vertebrates and that hotspots derived from the latter can also include a high diversity of invertebrates. In this regard, China qualifies as an outstanding multi-taxon hotspot of diversity, requiring intense biodiversity research and conservation effort. Our findings extend the limited knowledge on broad-scale invertebrate distributions and allow for a better understanding of diversity patterns across a larger range of the world's biodiversity than usually considered. [source] Why are diversity and endemism Linked on islands?ECOGRAPHY, Issue 3 2007Christopher C. Witt No abstract is available for this article. [source] Effects of species' ecology on the accuracy of distribution modelsECOGRAPHY, Issue 1 2007Jana M. McPherson In the face of accelerating biodiversity loss and limited data, species distribution models , which statistically capture and predict species' occurrences based on environmental correlates , are increasingly used to inform conservation strategies. Additionally, distribution models and their fit provide insights on the broad-scale environmental niche of species. To investigate whether the performance of such models varies with species' ecological characteristics, we examined distribution models for 1329 bird species in southern and eastern Africa. The models were constructed at two spatial resolutions with both logistic and autologistic regression. Satellite-derived environmental indices served as predictors, and model accuracy was assessed with three metrics: sensitivity, specificity and the area under the curve (AUC) of receiver operating characteristics plots. We then determined the relationship between each measure of accuracy and ten ecological species characteristics using generalised linear models. Among the ecological traits tested, species' range size, migratory status, affinity for wetlands and endemism proved most influential on the performance of distribution models. The number of habitat types frequented (habitat tolerance), trophic rank, body mass, preferred habitat structure and association with sub-resolution habitats also showed some effect. In contrast, conservation status made no significant impact. These findings did not differ from one spatial resolution to the next. Our analyses thus provide conservation scientists and resource managers with a rule of thumb that helps distinguish, on the basis of ecological traits, between species whose occurrence is reliably or less reliably predicted by distribution models. Reasonably accurate distribution models should, however, be attainable for most species, because the influence ecological traits bore on model performance was only limited. These results suggest that none of the ecological traits tested provides an obvious correlate for environmental niche breadth or intra-specific niche differentiation. [source] Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: geometric constraints, area and climate effectsECOGRAPHY, Issue 6 2006Cuizhang Fu We studied frog biodiversity along an elevational gradient in the Hengduan Mountains, China. Endemic and non-endemic elevational diversity patterns were examined individually. Competing hypotheses were also tested for these patterns. Species richness of total frogs, endemics and non-endemics peaked at mid-elevations. The peak in endemic species richness was at higher elevations than the maxima of total species richness. Endemic species richness followed the mid-domain model predictions, and showed a nonlinear relationship with temperature. Water and energy were the most important variables in explaining elevational patterns of non-endemic species richness. A suite of interacting climatic and geometric factors best explained total species richness patterns along the elevational gradient. We suggest that the mid-domain effect was an important factor to explain elevational richness patterns, especially in regions with high endemism. [source] The significance of geographic range size for spatial diversity patterns in Neotropical palmsECOGRAPHY, Issue 1 2006Holger Kreft We examined the effect of range size in commonly applied macroecological analyses using continental distribution data for all 550 Neotropical palm species (Arecaceae) at varying grain sizes from 0.5° to 5°. First, we evaluated the relative contribution of range-restricted and widespread species on the patterns of species richness and endemism. Second, we analysed the impact of range size on the predictive value of commonly used predictor variables. Species sequences were produced arranging species according to their range size in ascending, descending, and random order. Correlations between the cumulative species richness patterns of these sequences and environmental predictors were performed in order to analyse the effect of range size. Despite the high proportion of rare species, patterns of species richness were found to be dominated by a minority of widespread species (,20%) which contained 80% of the spatial information. Climatic factors related to energy and water availability and productivity accounted for much of the spatial variation of species richness of widespread species. In contrast, species richness of range-restricted species was to a larger extent determined by topographical complexity. However, this effect was much more difficult to detect due to a dominant influence of widespread species. Although the strength of different environmental predictors changed with spatial scale, the general patterns and trends proved to be relatively stabile at the examined grain sizes. Our results highlight the difficulties to approximate causal explanations for the occurrence of a majority of species and to distinguish between contemporary climatic factors and history. [source] The implications of different species concepts for describing biodiversity patterns and assessing conservation needs for African birdsECOGRAPHY, Issue 5 2005Shaun Dillon It has been suggested that switching from the widely used Biological Species Concept to a Phylogenetic Species Concept, would result in the appearance of hitherto neglected patterns of endemism. The problem has mainly been analyzed with respect to endemic taxa and for rather limited geographical regions, but will here be analysed for the entire resident avifauna of sub-Saharan Africa. A database of African bird distributions was re-edited to create two new datasets representing 1572 biological species and 2098 phylogenetic species. Species richness patterns were virtually identical with the two taxonomies, and only subtle changes were found in the geographical variation in range-size rarity sum. However, there were some differences in the most range-restricted species, with increased complexity of long-recognized centres of endemism. Overall, then, the large-scale biogeographic patterns are robust to changes in species concepts. This reflects the aggregated nature of endemism, with certain areas acting as "species pumps" and large intervening areas being characterised by a predominance of widespread species which distribute themselves in accordance with contemporary environmental conditions. The percentages of phylogenetic and threatened species captured in a BSC near-minimum set of 64 grid-cells and a PSC near-maximum set, with the same number of grid-cells, are very similar. [source] The value of georeferenced collection records for predicting patterns of mosquito species richness and endemism in the NeotropicsECOLOGICAL ENTOMOLOGY, Issue 1 2008DESMOND H. FOLEY Abstract 1.,Determining large-scale distribution patterns for mosquitoes could advance knowledge of global mosquito biogeography and inform decisions about where mosquito inventory needs are greatest. 2.,Over 43 000 georeferenced records are presented of identified and vouchered mosquitoes from collections undertaken between 1899 and 1982, from 1853 locations in 42 countries throughout the Neotropics. Of 492 species in the data set, 23% were only recorded from one location, and Anopheles albimanus Wiedemann is the most common species. 3.,A linear log,log species,area relationship was found for mosquito species number and country area. Chile had the lowest relative density of species and Trinidad-Tobago the highest, followed by Panama and French Guiana. 4.,The potential distribution of species was predicted using an Ecological Niche Modelling (ENM) approach. Anopheles species had the largest predicted species ranges, whereas species of Deinocerites and Wyeomyia had the smallest. 5.,Species richness was estimated for 1° grids and by summing predicted presence of species from ENM. These methods both showed areas of high species richness in French Guiana, Panama, Trinidad-Tobago, and Colombia. Potential hotspots in endemicity included unsampled areas in Panama, French Guiana, Colombia, Belize, Venezuela, and Brazil. 6.,Argentina, The Bahamas, Bermuda, Bolivia, Cuba, and Peru were the most under-represented countries in the database compared with known country species occurrence data. Analysis of species accumulation curves suggested patchiness in the distribution of data points, which may affect estimates of species richness. 7.,The data set is a first step towards the development of a global-scale repository of georeferenced mosquito collection records. [source] Testing for endemism, genotypic diversity and species concepts in Antarctic terrestrial microalgae of the Tribonemataceae (Stramenopiles, Xanthophyceae)ENVIRONMENTAL MICROBIOLOGY, Issue 3 2009Nataliya Rybalka Summary The genetic diversity of all available culture strains of the Tribonemataceae (Stramenopiles, Xanthophyceae) from Antarctica was assessed using the chloroplast-encoded psbA /rbcL spacer region sequences, a highly variable molecular marker, to test for endemism when compared with their closest temperate relatives. There was no species endemic for Antarctica, and no phylogenetic clade corresponded to a limited geographical region. However, species of the Tribonemataceae may have Antarctic populations that are distinct from those of other regions because the Antarctic strain spacer sequences were not identical to sequences from temperate regions. Spacer sequences from five new Antarctic isolates were identical to one or more previously available Antarctic strains, indicating that the Tribonemataceae diversity in Antarctic may be rather limited. Direct comparisons of the spacer sequences and phylogenetic analyses of the more conserved rbcL gene revealed that current morphospecies were inadequate to describe the actual biodiversity of the group. For example, the genus Xanthonema, as currently circumscribed, was paraphyletic. Fortunately, the presence of distinctive sequence regions within the psbA/rbcL spacer, together with differences in the rbcL phylogeny, provided significant autoapomorphic criteria to re-define the Tribonemataceae species. [source] Soils of a Mediterranean hot spot of biodiversity and endemism (Sardinia, Tyrrhenian Islands) are inhabited by pan-European, invasive species of Hypocrea/TrichodermaENVIRONMENTAL MICROBIOLOGY, Issue 1 2009Quirico Migheli Summary We have used a Mediterranean hot spot of biodiversity (the Island of Sardinia) to investigate the impact of abiotic factors on the distribution of species of the common soil fungus Trichoderma. To this end, we isolated 482 strains of Hypocrea/Trichoderma from 15 soils comprising undisturbed and disturbed environments (forest, shrub lands and undisturbed or extensively grazed grass steppes respectively). Isolates were identified at the species level by the oligonucleotide BarCode for Hypocrea/Trichoderma (TrichOKEY), sequence similarity analysis (Trichoblast) and phylogenetic inferences. The majority of the isolates were positively identified as pan-European and/or pan-global Hypocrea/Trichoderma species from sections Trichoderma and Pachybasium, comprising H. lixii/T. harzianum, T. gamsii, T. spirale, T. velutinum, T. hamatum, H. koningii/T. koningii, H. virens/T. virens, T. tomentosum, H. semiorbis, H. viridescens/T. viridescens, H. atroviridis/T. atroviride, T. asperellum, H. koningiopsis/T. koningiopsis and Trichoderma sp. Vd2. Only one isolate represented a new, undescribed species belonging to the Harzianum,Catoptron Clade. Internal transcribed spacer sequence analysis revealed only one potentially endemic internal transcribed spacer 1 allele of T. hamatum. All other species exhibited genotypes that were already found in Eurasia or in other continents. Only few cases of correlation of species occurrence with abiotic factors were recorded. The data suggest a strong reduction of native Hypocrea/Trichoderma diversity, which was replaced by extensive invasion of species from Eurasia, Africa and the Pacific Basin. [source] Biogeography of bacteria associated with the marine sponge Cymbastela concentricaENVIRONMENTAL MICROBIOLOGY, Issue 3 2005Michael W. Taylor Summary Recent debate regarding microbial biogeography has focused largely on free-living microbes, yet those microbes associated with host organisms are also of interest from a biogeographical perspective. Marine eukaryotes and associated bacteria should provide ideal systems in which to consider microbial biogeography, as (i) bacteria in seawater should be able to disperse among individuals of the same host species, yet (ii) potential for adaptation to particular hosts (and thus speciation) also exists. We used 16S rDNA-DGGE (denaturing gradient gel electrophoresis) to examine geographic variability in bacterial community composition in the marine sponge Cymbastela concentrica. Denaturing gradient gel electrophoresis banding patterns (and phylogenetic analysis of excised DGGE bands) indicated different communities in Cymbastela concentrica from tropical versus temperate Australia. In contrast, communities were very similar over a 500-km portion of the sponge's temperate range. Variation in bacterial community composition was also considered with respect to ocean current patterns. We speculate that the divergent communities in different parts of the sponge's range provide evidence of endemism attributed to host association, although variation in environmental factors such as light and temperature could also explain the observed results. Interestingly, bacterial communities in seawater varied much less between tropical and temperate locations than did those in C. concentrica, supporting the concept of widespread dispersal among these free-living microbes. [source] DIVERSIFICATION OF THE AFRICAN GENUS PROTEA (PROTEACEAE) IN THE CAPE BIODIVERSITY HOTSPOT AND BEYOND: EQUAL RATES IN DIFFERENT BIOMESEVOLUTION, Issue 3 2010Luis M. Valente The Cape region of South Africa is a hotspot of flowering plant biodiversity. However, the reasons why levels of diversity and endemism are so high remain obscure. Here, we reconstructed phylogenetic relationships among species in the genus Protea, which has its center of species richness and endemism in the Cape, but also extends through tropical Africa as far as Eritrea and Angola. Contrary to previous views, the Cape is identified as the ancestral area for the radiation of the extant lineages: most species in subtropical and tropical Africa are derived from a single invasion of that region. Moreover, diversification rates have been similar within and outside the Cape region. Migration out of the Cape has opened up vast areas, but those lineages have not diversified as extensively at fine spatial scales as lineages in the Cape. Therefore, higher net rates of diversification do not explain the high diversity and endemism of Protea in the Cape. Instead, understanding why the Cape is so diverse requires an explanation for how Cape species are able to diverge and persist at such small spatial scales. [source] HABITAT FRAGMENTATION AND BIODIVERSITY: TESTING FOR THE EVOLUTIONARY EFFECTS OF REFUGIAEVOLUTION, Issue 6 2004Jon R. Bridle Abstract Concordant areas of endemism among taxa have important implications both for understanding mechanisms of speciation and for framing conservation priorities. Here we discuss the need for careful testing of phylogeographic data for evidence of such concordance, with particular reference to the Indonesian island of Sulawesi. This is because there are good reasons to question whether concordance between taxa is likely to be a common pattern, and because of the serious implications of incorrectly concluding that the biodiversity of a given area can be partitioned in this way. [source] Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species?FEMS MICROBIOLOGY ECOLOGY, Issue 2 2007Wolfgang Petz Abstract Ciliate diversity was investigated in situ in freshwater ecosystems of the maritime (South Shetland Islands, mainly Livingston Island, 63°S) and continental Antarctic (Victoria Land, 75°S), and the High Arctic (Svalbard, 79°N). In total, 334 species from 117 genera were identified in both polar regions, i.e. 210 spp. (98 genera) in the Arctic, 120 spp. (73 genera) in the maritime and 59 spp. (41 genera) in the continental Antarctic. Forty-four species (13% of all species) were common to both Arctic and Antarctic freshwater bodies and 19 spp. to both Antarctic areas (12% of all species). Many taxa are cosmopolitans but some, e.g. Stentor and Metopus spp., are not, and over 20% of the taxa found in any one of the three areas are new to science. Cluster analysis revealed that species similarity between different biotopes (soil, moss) within a study area was higher than between similar biotopes in different regions. Distinct differences in the species composition of freshwater and terrestrial communities indicate that most limnetic ciliates are not ubiquitously distributed. These observations and the low congruence in species composition between both polar areas, within Antarctica and between high- and temperate-latitude water bodies, respectively, suggest that long-distance dispersal of limnetic ciliates is restricted and that some species have a limited geographical distribution. [source] Lopingian (Late Permian) high-resolution conodont biostratigraphy in Iran with comparison to South China zonationGEOLOGICAL JOURNAL, Issue 2-3 2010Shu-Zhong Shen Abstract Lopingian (Late Permian) conodonts and stratigraphy in northwest and central Iran have become hotly debated issues recently. We here use a sample-population approach, to develop a high-resolution conodont biostratigraphic framework for the Lopingian of Iran based on a re-examination of collections studied by Sweet from the Kuh-e-Ali Bashi area, northwest Iran; samples from the Abadeh C section and a nearby Permian-Triassic boundary section in the Abadeh area; and on published data. Six Wuchiapingian conodont zones, the Clarkina dukouensis, C. asymmetrica, C. leveni, C. guangyuanensis, C. transcaucasica and C. orientalis zones, and eight Changhsingian conodont zones, the Clarkina wangi, C. subcarinata, C. changxingensis, C. bachmanni, C. nodosa, C. yini, C. abadehensis and C. hauschkei zones, are described and figured. Diagnoses of ontogenetic characteristics to population variations of all the zone-naming species are re-described based on a sample-population taxonomic concept. The high-resolution Lopingian conodont zonation in Iran is closely correlative with its counterpart in South China. However, slightly different evolutionary trends in Clarkina populations existed at the very end of the Changhsingian in Iran and South China. This reflects a geographical cline and/or facies dependence and endemism in Clarkina populations rather than stratigraphic incompleteness of sections in either Iran or South China. Copyright © 2010 John Wiley & Sons, Ltd. [source] Early Cretaceous bivalves of the Neuquén Basin, west-central Argentina: notes on taxonomy, palaeobiogeography and palaeoecologyGEOLOGICAL JOURNAL, Issue 2 2007Dario G. Lazo Abstract This paper provides an updated taxonomic inventory of the bivalve fauna collected in the Pilmatué Member of the Agrio Formation of the Neuquén Basin, west-central Argentina, places the fauna in its palaeobiogeographic setting, and addresses its palaeoecological significance. Thirty-one Late Valanginian to Early Hauterivian bivalve species within 24 genera were identified. A large part (32%) of the identified bivalve species occur over a wide geographical area: from the Pacific coast of South America to Europe, North Africa, Central Asia and East and South Africa; some are also recorded in Japan. A relatively high degree of endemism (26%) is shown, suggesting that some of the bivalve species had barriers to their dispersal; larval strategy and length of larval development were probably important. A significant number (42%) of the bivalve taxa are left in open nomenclature as they are probably new species. Bivalve guilds are described to interpret palaeoecology, in particular the ecospace utilization. Guilds are based on tiering, life habit, and feeding category. Eight guilds are recognized: free-lying epifaunal, cemented epifaunal, epibyssate, boring, endobyssate, shallow burrowing, deep burrowing and deep burrowing with symbiotic bacteria. The fauna is composed only of suspension-feeders indicating that food resources were dominantly in suspension, in agreement with the predominantly shallow-water aspect of the study deposits. The ecospace utilization in the shoreface is broader than in the offshore shelf, suggesting more favourable living conditions and/or a wider range of different habitat types represented. Copyright © 2007 John Wiley & Sons, Ltd. [source] Biodiversity on land and in the seaGEOLOGICAL JOURNAL, Issue 3-4 2001Michael J. Benton Abstract Life on land today is as much as 25 times as diverse as life in the sea. Paradoxically, this extraordinarily high level of continental biodiversity has been achieved in a shorter time and it occupies a much smaller area of the Earth's surface than does marine biodiversity. Raw palaeontological data suggest very different models for the diversification of life on land and in the sea. The well-studied marine fossil record appears to show evidence for an equilibrium model of diversification, with phases of rapid radiation, followed by plateaux that may indicate times of equilibrium diversity. The continental fossil record shows exponential diversification from the Silurian to the present. These differences appear to be real: the continental fossil record is unlikely to be so poor that all evidence for a high initial equilibrial diversity has been lost. In addition, it is not clear that the apparently equilibrial marine model is correct, since it is founded on studies at familial level. At species level, a logistic family-level curve probably breaks down to an exponential. The rocketing diversification rates of flowering plants, insects, and other land life are evidently hugely different from the more sluggish rates of diversification of life in the sea, perhaps as a result of greater endemism and habitat complexity on land. Copyright © 2001 John Wiley & Sons, Ltd. [source] Pliocene forest dynamics as a primary driver of African bird speciationGLOBAL ECOLOGY, Issue 1 2010Gary Voelker ABSTRACT Aim, Montane tropics are areas of high endemism, and mechanisms driving this endemism have been receiving increasing attention at a global scale. A general trend is that climatic factors do not explain the species richness of species with small to medium-sized geographic ranges, suggesting that geological and evolutionary processes must be considered. On the African continent, several hypotheses including both refugial and geographic uplift models have been advanced to explain avian speciation and diversity in the lowland forest and montane regions of central and eastern Africa; montane regions in particular are recognized as hotspots of vertebrate endemism. Here, we examine the possible role of these models in driving speciation in a clade of African forest robins. Location, Africa. Methods, We constructed the first robustly supported molecular phylogenetic hypothesis of forest robins. On this phylogeny, we reconstructed habitat-based distributions and geographic distributions relative to the Albertine Rift. We also estimated the timing of lineage divergences via a molecular clock. Results, Robust estimates of phylogenetic relationships and clock-based divergences reject Miocene tectonic uplift and Pleistocene forest refugia as primary drivers of speciation in forest robins. Instead, our data suggest that most forest robin speciation took place in the Late Pliocene, from 3.2 to 2.2 Ma. Distributional patterns are complex, with the Albertine Rift region serving as a general east,west break across the group. Montane distributions are inferred to have evolved four times. Main conclusions, Phylogenetic divergence dates coincide with a single period of lowland forest retraction in the late Pliocene, suggesting that most montane speciation resulted from the rapid isolation of populations in montane areas, rather than montane areas themselves being drivers of speciation. This conclusion provides additional evidence that Pliocene climate change was a major driver of speciation in broadly distributed African animal lineages. We further show that lowland forest robins are no older than their montane relatives, suggesting that lowland areas are not museums which house ,ancient' taxa; rather, for forest robins, montane areas should be viewed as living museums of a late Pliocene diversification event. A forest refugial pattern is operating in Africa, but it is not constrained to the Pleistocene. [source] Incursion and excursion of Antarctic biota: past, present and futureGLOBAL ECOLOGY, Issue 2 2006D. K. A. Barnes ABSTRACT Aim, To investigate the major paradigms of intense isolation and little anthropogenic influence around Antarctica and to examine the timings and scales of the modification of the southern polar biota. Location, Antarctica and surrounding regions. Methods, First, mechanisms of and evidence for long-term isolation are reviewed. These include continental drift, the development of a surrounding deep-water channel and the Antarctic Circumpolar Current (ACC). They also include levels of endemism, richness and distinctiveness of assemblages. Secondly, evidence for past and modern opportunities for species transport are investigated. Comparative levels of alien establishments are also examined around the Southern Ocean. Discussion, On a Cenozoic time-scale, it is clear that Gondwana's fragmentation led to increasing geographical isolation of Antarctica and the initiation of the ACC, which restricted biota exchange to low levels while still permitting some movement of biota. On a shorter Quaternary time-scale, the continental ice-sheet, influenced by solar (Milankovitch) cycles, has expanded and contracted periodically, covering and exposing terrestrial and continental shelf habitats. There were probably refugia for organisms during each glacial maxima. It is also likely that new taxa were introduced into Antarctica during cycles of ice sheet and oceanic front movement. The current situation (a glacial minimum) is not ,normal'; full interglacials represent only 10% of the last 430 ka. On short (ecological) time-scales, many natural dispersal processes (airborne, oceanic eddy, rafting and hitch-hiking on migrants) enable the passage of biota to and from Antarctica. In recent years, humans have become influential both directly by transporting organisms and indirectly by increasing survival and establishment prospects via climate change. Main conclusions, Patterns of endemism and alien establishment are very different across taxa, land and sea, and north vs. south of the Polar Frontal Zone. Establishment conditions, as much as transport, are important in limiting alien establishment. Three time-scales emerge as important in the modification of Antarctica's biota. The natural ,interglacial' process of reinvasion of Antarctica is being influenced strongly by humans. [source] Increasing representation of localized dung beetles across a chronosequence of regenerating vegetation and natural dune forest in South AfricaGLOBAL ECOLOGY, Issue 3 2002Adrian L. V. Davis Abstract Aim Species assemblages with high proportions of localized taxa occur in regional islands with a history of strong eco-climatic separation from adjacent systems. Current disturbance in such islands of relictualism or endemism disrupts the distinctive local character in favour of regionally distributed taxa with a wider range of tolerances. However, rehabilitation of the system should restore the localized biota. Thus, we used biogeographical composition to assess progress towards restoration of the dung beetle fauna associated with such an island of endemism following dredge-mining. Location The study was conducted in natural coastal dune forest and a 23-year chronosequence of regenerating dune vegetation in the Maputaland centre of endemism, KwaZulu-Natal, South Africa. Methods Dung beetles were trapped in eight stands of regenerating vegetation of different ages (< 1 year to ~21 years) and in four stands of natural dune forest with differing ecological characteristics defined by measurements of vegetative physiognomy and microclimate. Species groups defined from multivariate analysis of biogeographical distribution patterns and vegetation associations were used to demonstrate quantitative compositional changes in the dung beetle assemblages across the chronosequence to natural forest. Results Three biogeographical groups were defined. One group comprised species widespread in southern Africa or both southern and east Africa. The other two groups were endemic, one to the east coast and the other to Maputaland. There was a general trend from dominance by regionally distributed dung beetle taxa to dominance by locally distributed taxa across the chronosequence of regenerating vegetation from grassland, to open Acacia karroo thicket, to dense A. karroo- dominated woodland. However, this trend was linked closely to the relative physiognomic and microclimatic similarity between the regenerating vegetation and natural forest. Thus, proportions of locally distributed taxa were lower in older chronosequence woodland (~18,~21 years) with its low canopy cover and open understorey than in dense early chronosequence woodland (~9,~12 years), which is physiognomically and microclimatically closer to species-diverse natural forest with its dense canopy and understorey. Overall, the present dung beetle community comprises five species groups. Single widespread (21 spp.) and endemic groups (14 spp.) showed similar patterns of association with early chronosequence grassland and open thicket stands. A single widespread (3 spp.) and two endemic shade-associated groups (3 and 11 spp.) showed differing patterns of association centred, respectively, in late chronosequence woodland, natural forest, or all shaded stands. Main conclusions At 23 years, vegetative regeneration is still at an early stage, but abundant activity of most, although not all species recorded in natural forest, is recovered with the closure of the woodland canopy at ~9 years. Compositional differences with respect to natural forest vary closely with vegetative physiognomy and its effect on the microclimate. Therefore, full compositional recovery is dependent on the re-establishment of natural forest physiognomy and microclimate. [source] Breaking taboos in the tropics: incest promotes colonization by wood-boring beetlesGLOBAL ECOLOGY, Issue 4 2001Bjarte H. Jordal Abstract 1,Inbreeding and parthenogenesis are especially frequent in colonizing species of plants and animals, and inbreeding in wood-boring species in the weevil families Scolytinae and Platypodidae is especially common on small islands. In order to study the relationship between colonization success, island attributes and mating system in these beetles, we analysed the relative proportions of inbreeders and outbreeders for 45 Pacific and Old World tropical islands plus two adjacent mainland sites, and scored islands for size, distance from nearest source population, and maximum altitude. 2,The numbers of wood-borer species decreased with decreasing island size, as expected; the degree of isolation and maximum island altitude had negligible effects on total species numbers. 3,Numbers of outbreeding species decreased more rapidly with island size than did those of inbreeders. Comparing species with similar ecology (e.g. ambrosia beetles) showed that this difference was best explained by differential success in colonization, rather than by differences in resource utilization or sampling biases. This conclusion was further supported by analyses of data from small islands, which suggested that outbreeding species have a higher degree of endemism and that inbreeding species are generally more widespread. 4,Recently established small populations necessarily go through a period of severe inbreeding, which should affect inbreeding species much less than outbreeding ones. In addition, non-genetic ecological and behavioural (,Allee') effects are also expected to reduce the success of outbreeding colonists much more than that of inbreeders: compared with inbreeders, outbreeders are expected to have slower growth rates, have greater difficulties with mate-location and be vulnerable to random extinction over a longer period. [source]
| |