Home About us Contact | |||
Endemic Flora (endemic + flora)
Selected AbstractsExtinction-Rate Estimates for a Modern Neotropical FloraCONSERVATION BIOLOGY, Issue 5 2002Nigel C. A. Pitman We present the first quantitative estimates of extinction rate in a complete Neotropical flora based on historical plant-collection records, quantitative measurements of forest loss and plant diversity, and the conservation status of endemic plant species in Ecuador. Our analyses suggest that 19,46 endemic plant species have gone extinct in Ecuador over the last 250 years, mostly because of habitat loss, and therefore are now globally extinct. An additional 282 species, nearly 7% of Ecuador's endemic flora, qualify as critically endangered. We found evidence of impending large-scale plant extinctions in the country's coastal and Andean forests, but little extinction and low potential for extinction in the Amazonian lowlands. Resumen: Las preocupaciones sobre las elevadas tasas de extinción en los trópicos son una característica común en la literatura sobre conservación, pero las mediciones directas son escasas. Presentamos las primeras estimaciones cuantitativas de la tasa de extinción en una flora neotropical completa basada en los expedientes históricos de colecciones de plantas, las mediciones cuantitativas de la pérdida de bosque y de diversidad y el estado de conservación de especies de plantas endémicas en Ecuador. Nuestro análisis sugiere que 19,46 especies de plantas se han extinguido en el Ecuador a lo largo de los últimos 250 años, debido principalmente a la pérdida de hábitat y por lo tanto son ahora extintas a nivel mundial. Además 282 especies, cerca del 7% de la flora endémica del Ecuador califica como críticamente amenazada. Encontramos indicaciones de inminentes extinciones de gran escala en el país, tanto en los bosques costeros como en los bosques de los Andes, pero poca extinción y bajo potencial de extinción en las tierras bajas del Amazonas. [source] Range size, taxon age and hotspots of neoendemism in the California floraDIVERSITY AND DISTRIBUTIONS, Issue 3 2010Nathan J. B. Kraft Abstract Aim, Sustaining biological diversity requires the protection of the ecological, evolutionary and landscape-level processes that generate it. Here, we identify areas of high neoendemism in a global diversity hotspot, the California flora, using range size data and molecular-based estimates of taxon age. Location, California, USA. Methods, We compiled distribution and range size data for all plant taxa endemic to California and internal transcribed spacer (ITS)-based age estimates for 337 putative neoendemics (15% of the endemic flora). This information was combined to identify areas in the state with high proportions of young and restricted-range taxa. We overlaid the distribution of neoendemic hotspots on maps of currently protected lands and also explored correlations between our diversity measures and climate. Results, The central coast of California, the Sierra Nevada and the San Bernardino Range contained endemics with the most restricted distributions on average, while areas in the Desert and Great Basin provinces found within the state were composed of the youngest neoendemics on average. Diversity measures that took age and range size into account shifted the estimate of highest endemic diversity in the state towards the Desert and Great Basin regions relative to simple counts of endemic species richness. Our diversity measures were poorly correlated with climate and topographic heterogeneity. Main conclusions, Substantial portions of California with high levels of plant neoendemism fall outside of protected lands, indicating that additional action will be needed to preserve the geographic areas apparently associated with high rates of plant diversification. The neoendemic flora of the deserts appears particularly young in our analyses, which may reflect the relatively recent origin of desert environments within the state. [source] Faster returns on ,leaf economics' and different biogeochemical niche in invasive compared with native plant speciesGLOBAL CHANGE BIOLOGY, Issue 8 2010JOSEP PENUELAS Abstract Plant-invasive success is one of the most important current global changes in the biosphere. To understand which factors explain such success, we compared the foliar traits of 41 native and 47 alien-invasive plant species in Oahu Island (Hawaii), a location with a highly endemic flora that has evolved in isolation and is currently vulnerable to invasions by exotic plant species. Foliar traits, which in most cases presented significant phylogenetic signal, i.e. closely related species tended to resemble each other due to shared ancestry, separated invasive from native species. Invasive species had lower leaf mass per area and enhanced capacities in terms of productivity (photosynthetic capacity) and nutrient capture both of macro- (N, P, K) and microelements (Fe, Ni, Cu and Zn). All these differences remain highly significant after removing the effects of phylogenetic history. Alien-invasive species did not show higher efficiency at using limiting nutrient resources, but they got faster leaf economics returns and occupied a different biogeochemical niche, which helps to explain the success of invasive plants and suggests that potential increases in soil nutrient availability might favor further invasive plant success. [source] Endemic species and ecosystem sensitivity to climate change in NamibiaGLOBAL CHANGE BIOLOGY, Issue 5 2006WILFRIED THUILLER Abstract We present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ,2050 and ,2080. We used both niche-based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning. Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life-form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life-formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north-eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2, currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ,2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ,2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region. [source] The Azores diversity enigma: why are there so few Azorean endemic flowering plants and why are they so widespread?JOURNAL OF BIOGEOGRAPHY, Issue 1 2010Mark A. Carine Abstract Aim, Endemism in the flora of the Azores is high (33%) but in other respects, notably the paucity of evolutionary radiations and the widespread distribution of most endemics, the flora differs markedly from the floras of the other Macaronesian archipelagos. We evaluate hypotheses to explain the distinctive patterns observed in the Azorean endemic flora, focusing particularly on comparisons with the Canary Islands. Location, Azores archipelago. Methods, Data on the distribution and ecology of Azorean endemic flowering plants are reviewed to ascertain the incidence of inter-island allopatric speciation and adaptive, ecological speciation. These are contrasted with patterns for the Canary Islands. Patterns of endemism in the Azores and Canaries are further investigated in a phylogenetic context in relation to island age. beast was used to analyse a published molecular dataset for Pericallis (Asteraceae) and to investigate the relative ages of Azorean and Canarian lineages. Results, There are few examples of inter-island allopatric speciation in the Azorean flora, despite the considerable distances between islands and sub-archipelagos. In contrast, inter-island allopatric speciation has been an important process in the evolution of the Canary Islands flora. Phylogenetic data suggest that Azorean endemic lineages are not necessarily recent in origin. Furthermore, in Pericallis the divergence of the Azorean endemic lineage from its closest relative pre-dates the radiation of a Canarian herbaceous clade by inter-island allopatric speciation. Main conclusions, The data presented do not support suggestions that hypotheses pertaining to island age, age of endemic lineages and ecological diversity considered individually explain the lack of radiations and the widespread distribution of Azorean endemics. We suggest that palaeoclimatic variation, a factor rarely considered in macroecological studies of island diversity patterns, may be an important factor. Palaeoclimatic data suggest frequent and abrupt transitions between humid and arid conditions in the Canaries during the late Quaternary, and such an unstable climate may have driven the recent diversification of the flora by inter-island allopatric speciation, a process largely absent from the climatically more stable Azores. Further phylogenetic/phylogeographic analyses are necessary to determine the relative importance of palaeoclimate and other factors in generating the patterns observed. [source] Alien and endemic flora at reference and non-reference sites in Mediterranean-type streams in PortugalAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2007Francisca C. Aguiar Abstract 1.A comparison was made between a variety of alien and endemic plant species from 272 aquatic and riparian habitats in Portuguese Mediterranean-type streams in reference condition , i.e. near-natural river corridors , and non-reference condition. The objective was to detect differences in relative proportion and cover between these species groups. The differences in endemic and alien flora from siliceous and calcareous river types were also analysed. Environmental and human disturbance factors were related with the richness and cover of both species groups. 2.A total of 568 species were found, of which 44 were alien and 28 were endemic. Alien species were present at 91% of the surveyed locations, and were consistently more widespread at non-reference sites than at reference ones for both river types, with calcareous sites having a higher invasibility. Endemic species occurred at 45% of the sampling sites and displayed a significantly lower richness and cover than their alien counterparts. 3.Alien richness and cover were positively related to direct human disturbance within the river systems, and with floodplain uses such as urban occupation, intensive agriculture, and nutrient inputs. Endemic species also respond to anthropogenic variables, rather than to climatic and geographical ones, with richness and cover increasing as human impacts on fluvial systems and related floodplains decrease. 4.Comprehensive control of alien invasive species and the protection of endemic plant populations will require attempts at monitoring ecological river integrity, and the achievement of ,good ecological status' , one of the goals of the European Union's Water Framework Directive. Portuguese riparian areas must be managed in such a way as to protect the relatively few preserved riparian habitats by lowering the direct and indirect pressures in fluvial corridors and thus preventing future alien plant invasions. Copyright © 2006 John Wiley & Sons, Ltd. [source] Plant Community Structure in Tropical Rain Forest Fragments of the Western Ghats, India,BIOTROPICA, Issue 2 2006S. Muthuramkumar ABSTRACT Changes in tree, liana, and understory plant diversity and community composition in five tropical rain forest fragments varying in area (18,2600 ha) and disturbance levels were studied on the Valparai plateau, Western Ghats. Systematic sampling using small quadrats (totaling 4 ha for trees and lianas, 0.16 ha for understory plants) enumerated 312 species in 103 families: 1968 trees (144 species), 2250 lianas (60 species), and 6123 understory plants (108 species). Tree species density, stem density, and basal area were higher in the three larger (> 100 ha) rain forest fragments but were negatively correlated with disturbance scores rather than area per se. Liana species density, stem density, and basal area were higher in moderately disturbed and lower in heavily disturbed fragments than in the three larger fragments. Understory species density was highest in the highly disturbed 18-ha fragment, due to weedy invasive species occurring with rain forest plants. Nonmetric multidimensional scaling and Mantel tests revealed significant and similar patterns of floristic variation suggesting similar effects of disturbance on community compositional change for the three life-forms. The five fragments encompassed substantial plant diversity in the regional landscape, harbored at least 70 endemic species (3.21% of the endemic flora of the Western Ghats,Sri Lanka biodiversity hotspot), and supported many endemic and threatened animals. The study indicates the significant conservation value of rain forest fragments in the Western Ghats, signals the need to protect them from further disturbances, and provides useful benchmarks for restoration and monitoring efforts. [source] |