Home About us Contact | |||
End Groups (end + groups)
Kinds of End Groups Selected AbstractsCharacterization of New Amphiphilic Block Copolymers of N -Vinyl Pyrrolidone and Vinyl Acetate, 1 , Analysis of Copolymer Composition, End Groups, Molar Masses and Molar Mass Distributions,MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 8 2010Nick Fandrich Abstract New amphiphilic block copolymers consisting of N -vinyl pyrrolidone and vinyl acetate were synthesized via controlled radical polymerization using a reversible addition/fragmentation chain transfer (RAFT)/macromolecular design via the interchange of xanthates (MADIX) system. The synthesis was carried out in 1,4-dioxane as process solvent. In order to get conclusions on the mechanism of the polymerization the molecular structure of formed copolymers was analysed by means of different analytical techniques. 13C NMR spectroscopy was used for the determination of the monomer ratios. End groups were analysed by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This technique was also used to determine possible fragmentations of the RAFT end groups. By means of a combination of size exclusion chromatography, 13C NMR and static light scattering molar mass distributions and absolute molar masses could be analysed. The results clearly show a non-ideal RAFT mechanism. [source] O -Acylated 2-Phosphanylphenol Derivatives , Useful Ligands in the Nickel-Catalyzed Polymerization of EthyleneEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 9 2009Dmitry G. Yakhvarov Abstract The title ligands were prepared by O -acylation of 2-diphenylphosphanyl-4-methylphenol (1) or directly by double lithiation of 2-bromo-4-methylphenol and stepwise coupling with ClPPh2 and ClP(O)Ph2 or RC(O)Cl (R = Me, tBu, Ph, 4-MeOC6H4) to afford diphenylphosphinate 2 and carboxylic esters 3a,d. X-ray crystal structure analyses of 3b,d show conformations in which the P -phenyl substituents are rotated away from the ester group and the C(O)O , planes are nearly perpendicular to the phenol ring , plane. O -Acylated phosphanylphenols 2 and 3a,d form highly active catalysts with Ni(1,5-cod)2 (as does 1) for polymerization of ethylene, whereas phosphanylphenyl ethers do not give catalysts under the same conditions. The reason is the cleavage of the O -acyl bond upon heating with nickel(0) precursor compounds in the presence of ethylene. The precursors are P-coordinated Ni0 complexes, which are formed at room temperature, such as 4d obtained from 3d and Ni(cod)2 (in a 2:1 molar ratio), and characterized by multinuclear NMR spectroscopy. Upon heating in the presence of ethylene, the precatalysts are activated. Catalysts 2Ni and 3a,dNi convert ethylene nearly quantitatively, 2Ni slowly, and 3a,dNi rapidly, into linear polyethylene with vinyl and methyl end groups, and in the latter case, C(O)R end groups are also detectable. This proves insertion of Ni0 into the O,C(O)R bond of 3a,d ligands for formation of the primary catalyst. Termination of the first chain growing cycle by ,-hydride elimination changes the mechanism to the phosphanylphenolate,NiH initiated polymerization providing the main body of the polymer. A small retardation in the ethylene consumption rate with 3a,dNi catalysts relative to that observed for 1Ni and stabilization of the catalyst, which gives rise to reproducibly high ethylene conversion, is observed. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Star-Shaped D-,-A Molecules Containing a 2,4,6-Tri(thiophen-2-yl)-1,3,5-triazine Unit: Synthesis and Two-Photon Absorption PropertiesEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 32 2009Li Zou Abstract A series of new star-shaped donor-,-acceptor (D-,-A) molecules containing the 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine unit were synthesized and characterized. The 1,3,5-triazine group, as a strong electron-accepting center, is connected to three electron-donating end groups through ,-conjugated bridges. As a result of the coexistence of the electron acceptor and donor, these compounds show reversible or quasireversible redox behavior. Through changing the peripheral end group the optical properties can be modified. All compounds exhibit two-photon absorption activity in the range of 720,880 nm and show large two-photon absorption cross sections that are closely related to the intramolecular charge transfer and ,-conjugated length of the molecule.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Design, Synthesis, and Spectral Luminescent Properties of a Novel Polycarbocyanine Series Based on the 2,2-Difluoro-1,3,2-dioxaborine NucleusEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 9 2008Konstantin Zyabrev Abstract The natures of the chromophores in symmetric polymethine dyes derived from 2,2-difluoro-1,3,2-dioxaborine have been investigated. Ab initio quantum chemical calculations demonstrated that the presence of dioxaborine end residues stabilizes the frontier levels of the corresponding polymethine dye and makes electron-density distribution over the oxygen atoms in the chelate ring more even than in the analogous dye structure with boron-free acyclic end groups. A series of novel symmetric polycarbocyanines and a tricarbocyanine series with variously bridged polymethine chromophores have been synthesized from hitherto unknown pyrimidino-annelated dioxaborines. The absorption, fluorescence and 13C NMR spectroscopic data point to the polymethinic type of electron-density distribution in the 2,2-difluoro-1,3,2-dioxaborine polymethine dye molecules. The fundamental options for controlling the spectral properties of these dyes by modification of their polymethine chains have been evaluated. One of the new compounds synthesized is remarkable among the known open-chain polymethine dyes for its record high fluorescence quantum yield. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] Flame-retardant action of red phosphorus/magnesium oxide and red phosphorus/iron oxide compositions in recycled PETFIRE AND MATERIALS, Issue 5 2006F. Laoutid Abstract Red phosphorus was combined with metallic oxides Fe2O3 and MgO to improve the fire properties of recycled PET. Both Fe2O3 and MgO act as co-synergist agents at a total loading of 5 wt%. The analysis by diffraction X of the char formed during combustion shows that transformation of Fe2O3 to Fe3O4 occurs. Fe2O3 favours the oxidation and improves the effectiveness of red phosphorus. It is suggested that MgO interacts with acidic end groups of PET and forms a thermal stable residue. The thermal decomposition of recycled PET containing red phosphorus combined with Fe and Mg oxides was studied by thermal analysis and leads to an increase in char formation. While the incorporation of Fe2O3 in this ternary blend maintains the mechanical properties of PET, the reactivity of MgO leads to a brittle material. The use of reinforcements (talc and glass fibres) to mechanically stabilize the char formed during combustion of ternary blend with Fe2O3 entails a further decrease in heat release rate, nevertheless impact resistance of the material decreases dramatically. Copyright © 2005 John Wiley & Sons, Ltd. [source] Dramatic Morphology Control in the Fabrication of Porous Polymer Films,ADVANCED FUNCTIONAL MATERIALS, Issue 22 2008Luke A. Connal Abstract Highly ordered, porous honeycomb films are prepared by the breath-figure (BF) technique using dendron-functionalized star polymers as precursors. By changing the nature of the dendritic end groups, dramatically different porous morphologies can be produced. Three series of star polymers are prepared with both the size of the 2,2-bis(methoxy)propionic acid (bis-MPA)-based dendron end group and the dendron functionality being varied. Star polymers end-functionalized with acetonide-protected dendrons (generations 1 to 4) are initially prepared and the acetonide groups subsequently deprotected to yield hydroxyl-functionalized star polymers. Modification of these hydroxyl groups with pentadecafluorooctanoyl chloride yields a third series of functionalized star polymers. The resulting star polymers have surface groups with very different polarity and by utilizing these star polymers to form honeycomb films by the BF technique, the morphology produced is dramatically different. The star polymers with amphiphilic character afford interconnected porous morphologies with multiple layers of pores. The star polymers with pentadecafluorooctanoyl end groups show highly ordered monolayers of pores with extremely thin walls and represent a new porous morphology that has previously not been reported. The ability to prepare libraries of different dendronized star polymers has given further insights into the BF technique and allows the final porous morphology to be controllably tuned utilizing the functional chain ends and generation number of the dendronized star polymers. [source] Cooperative Catalysis in the Hydrolytic Kinetic Resolution of Epoxides by Chiral [(salen)Co(III)] Complexes Immobilized on Gold ColloidsADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 7-8 2008Thomas Belser Abstract Chiral salen ligands were incorporated into self-assembled thiolate monolayers (SAMs) on gold colloids. Treatment of the immobilized ligand with Co(OAc)2,4,H2O yielded the corresponding [(salen)Co(II)] complex, and aerobic oxidation in the presence of triflic acid afforded the catalytically active [(salen)Co(III)] complex. Functionalized gold colloids with a diameter of 3.4,nm, coated with a mixed monolayer of n -octanethiolates and thiolates with chiral [(salen)Co(III)] end groups were studied as catalysts in the hydrolytic kinetic resolution (HKR) of hexene-1-oxide. Extremely high selectivitiy and significant rate acceleration relative to homogeneous monomeric catalysts were observed. Recovery of the immobilized catalyst was accomplished by simple filtration, and catalyst reoxidation and repeated recycling (seven times) was possible with no loss of reactivity or enantioselectivity. [source] Synthesis and characterization of polyacrylamides containing meso -2,3-dimercaptosuccinic acid end groupsADVANCES IN POLYMER TECHNOLOGY, Issue 1 2010Cemal Özero Abstract By using meso -2,3-dimercaptosuccinic acid-cerium(IV) sulfate and meso -2,3-dimercaptosuccinic acid-potassium permanganate redox systems, the polymerization reaction of acrylamide (AAm) monomer was examined in aqueous acidic medium at low temperatures. Water-soluble polyacrylamides bearing meso -2,3-dimercaptosuccinic acid end groups were synthesized using meso -2,3-dimercaptosuccinic acid as a reducing agent. The effects of parameters such as the molar ratio of acrylamide to initiator, temperature, polymerization time, and sulfuric acid concentration on the yields and molecular weights of polymers were investigated. The augmentation in initiator concentration resulted in a decrease in molecular weight but an increase in the yield of polymers. The increase in reaction temperature from 20 to 60°C led to a decrease in the yield from 56.80% to 20.58%. Ce(IV) and Mn(VII) ions are reduced to Ce(III) and Mn(II) ions in the polymerization reaction and the synthesized acrylamide polymers containing meso -2,3-dimercaptosuccinic acid end groups can absorb these ions at the end of the polymerization reaction. Ultraviolet-visible and atomic absorption measurements of polymer solutions were performed to indicate complexation between polyacrylamide and Ce(III) ions or Mn(II) ions. © 2010 Wiley Periodicals, Inc. Adv Polym Techn 29:45,53, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20180 [source] Effects of addition of acrylic compatibilizer on the morphology and mechanical behavior of amorphous polyamide/SAN blendsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010D. Becker Abstract Amorphous polyamide (aPA)/acrylonitrile-styrene copolymer (SAN) blends were prepared using methyl methacrylate-maleic anhydride copolymer MMA-MA as compatibilizer. The aPA/SAN blends can be considered as a less complex version of the aPA/ABS (acrylonitrilebutadiene-styrene) blends, due to the absence of the ABS rubber phase in the SAN material. It is known that acrylic copolymer might be miscible with SAN, whereas the maleic anhydride groups from MMA-MA can react in situ with the amine end groups of aPA during melt blending. As a result, it is possible the in situ formation of aPA-g-MMA-MA grafted copolymers at the aPA/SAN interface during the melt processing of the blends. In this study, the MA content in the MMA-MA copolymer and its molecular weight was varied independently and their effects on the blend morphology and stress,strain behavior were evaluated. The morphology of the blends aPA/SAN showed a minimum in the SAN particle size at low amounts of MA in the compatibilizer, however, as the MA content in the MMA-MA copolymer was increased larger SAN particle sizes were observed in the systems. In addition, higher MA content in the compatibilizer lead to less ductile aPA/SAN blends under tensile testing. The results shown the viscosity ratio also plays a very important role in the morphology formation and consequently on the properties of the aPA/SAN blends studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] The effect of ionic interaction on the miscibility and crystallization behaviors of poly(ethylene glycol)/poly(L -lactic acid) blendsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Wei-Chi Lai Abstract The effect of end groups (2NH2) of poly(ethylene glycol) (PEG) on the miscibility and crystallization behaviors of binary crystalline blends of PEG/poly(L -lactic acid) (PLLA) were investigated. The results of conductivity meter and dielectric analyzer (DEA) implied the existence of ions, which could be explained by the amine groups of PEG gaining the protons from the carboxylic acid groups of PLLA. The miscibility of PEG(2NH2)/PLLA blends was the best because of the ionic interaction as compared with PEG(2OH, 1OH-1CH3, and 2CH3)/PLLA blends. Since the ionic interaction formed only at the chain ends of PEG(2NH2) and PLLA, unlike hydrogen bonds forming at various sites along the chains in the other PEG/PLLA blend systems, the folding of PLLA blended with PEG(2NH2) was affected in a different manner. Thus the fold surface free energy played an important role on the crystallization rate of PLLA for the PEG(2NH2)/PLLA blend system. PLLA had the least fold surface free energy and the fast crystallization rate in the PEG(2NH2)/PLLA blend system, among all the PEG/PLLA systems studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] A structure/function study of polyaminoamide dendrimers as silica scale growth inhibitorsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2005Konstantinos D Demadis Abstract Dendrimers have attracted immense attention during the last decade due to their interesting properties both from a basic and an applied research viewpoint. Encapsulation of metal nanoparticles for catalysis, drug delivery and light harvesting are only some applications of dendrimers that are breaking new ground. A novel application of dendrimer technology is described in the present paper that relates to industrial water treatment. Industrial water systems often suffer from undesirable inorganic deposits. These can form either in the bulk or on metallic surfaces, such as heat exchangers or pipelines. Silica (SiO2) scale formation and deposition is a major problem in high-silica-containing cooling waters. Scale prevention rather than removal is highly desired. In this paper, benchtop screening tests on various silica inhibition chemistries are reported, with emphasis on materials with a dendrimeric structure. Specifically, the inhibition properties of commercially available STARBURST® polyaminoamide (PAMAM) dendrimers generations 0.5, 1, 1.5, 2, and 2.5 are investigated in detail together with other commonly-used scale inhibitors. Experimental results show that inhibition efficiency largely depends on structural features of PAMAM dendrimers such as generation number and nature of the end groups. PAMAM dendrimers are effective inhibitors of silica scale growth at 40 ppm dosage levels. PAMAM dendrimers also act as silica nucleators, forming SiO2,PAMAM composites. This occurs because the SiO2 formed by incomplete inhibition interacts with cationic PAMAM-1 and -2. The general scope of silica formation and inhibition in industrial waters is also discussed. Copyright © 2005 Society of Chemical Industry [source] The identification of synthetic homopolymer end groups and verification of their transformations using MALDI-TOF mass spectrometryJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2010Yejia Li Abstract Recent advances in the resolving power of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) enable the detailed characterization of linear homopolymers, and in particular provide invaluable data for the determination of their end-group functionalities. With the growing importance of macromolecular coupling reactions in building complex polymer architectures, the ability to accurately monitor end-group transformations is becoming increasingly important for synthetic polymer chemists. This tutorial demonstrates the application of MALDI-TOF MS in determining both end-group functionalities and their transformations for linear homopolymers. Examples of both polycaprolactone and polystyrene are examined, and the strengths and weaknesses of various approaches to data analysis are given. Copyright © 2010 John Wiley & Sons, Ltd. [source] Matrix-assisted laser desorption/ionization collision-induced dissociation of linear single oligomers of nylon-6JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 10 2001Renata Murgasova Abstract Matrix-assisted laser desorption/ionization, collision induced-dissociation (MALDI-CID) has been used to obtain structural information for linear single oligomers of nylon-6. The effects of matrix and cationization agent in MALDI-CID analysis have been investigated. Fragmentation mechanisms are proposed for the series of ions that are observed in the MALDI-CID spectra of the hexamer, octamer and dodecamer. Fragmentation processes observed in the MALDI-CID spectra include cleavage of the end groups followed by dissociation of the m/z 113 unit. Cleavage of the oligamide chain occurs at the amide linkage, as well as at adjacent bonds. For the four matrices and three cationization agents investigated, 2,5-dihydroxybenzoic acid and sodium chloride showed the best performance for MALDI-CID analysis of the dodecamer. In addition, yields of the fragment ions in MALDI-CID spectra were found to be dependent on the chain length distribution. Copyright © 2001 John Wiley & Sons, Ltd. [source] Synthesis and self-assembly of well-defined cyclodextrin-centered amphiphilic A14B7 multimiktoarm star copolymers based on poly(,-caprolactone) and poly(acrylic acid)JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2010Peng-Fei Gou Abstract Novel amphiphilic A14B7 multimiktoarm star copolymers composed of 14 poly(,-caprolactone) (PCL) arms and 7 poly(acrylic acid) (PAA) arms with ,-cyclodextrin (,-CD) as core moiety were synthesized by the combination of controlled ring-opening polymerization (CROP) and atom transfer radical polymerization (ATRP). 14-Arm star PCL homopolymers (CDSi-SPCL) were first synthesized by the CROP of CL using per-6-(tert -butyldimethylsilyl)-,-CD as the multifunctional initiator in the presence of Sn(Oct)2 at 125 °C. Subsequently, the hydroxyl end groups of CDSi-SPCL were blocked by acetyl chloride. After desilylation of the tert -butyldimethylsilyl ether groups from the ,-CD core, 7 ATRP initiating sites were introduced by treating with 2-bromoisobutyryl bromide, which further initiated ATRP of tert -butyl acrylate (tBA) to prepare well-defined A14B7 multimiktoarm star copolymers [CDS(PCL-PtBA)]. Their molecular structures and physical properties were in detail characterized by 1H NMR, SEC-MALLS, and DSC. The selective hydrolysis of tert -butyl ester groups of the PtBA block gave the amphiphilic A14B7 multimiktoarm star copolymers [CDS(PCL-PAA)]. These amphiphilic copolymers could self-assemble into multimorphological aggregates in aqueous solution, which were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2961,2974, 2010 [source] Synthesis of biocompatible and biodegradable block copolymers of polyvinyl alcohol- block -poly(,-caprolactone) using metal-free living cationic polymerizationJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2009Izabela Magdalena Zaleska Abstract Applications of metal-free living cationic polymerization of vinyl ethers using HCl·Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ,-caprolactone (CL) with HCl·Et2O as a ring-opening polymerization. This combination method is a metal-free polymerization using HCl·Et2O. The formation of poly(isobutyl vinyl ether)- b -poly(,-caprolactone) (PIBVE- b -PCL) and poly(tert -butyl vinyl ether)- b -poly(,-caprolactone) (PTBVE- b -PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA- b -PCL by transformation of acid hydrolysis of tert -butoxy moiety of PTBVE in PTBVE- b -PCL. The synthesized copolymers showed well-defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169,5179, 2009 [source] Versatile ,-end group functionalization of RAFT polymers using functional methane thiosulfonatesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 12 2009Peter J. Roth Abstract Five different polymers, poly[methyl methacrylate] (PMMA), poly[lauryl methacrylate] (PLMA), poly[diethylene glycol methacrylate] (PDEGMA), poly[N -isopropylacrylamide] (PNIPA), and poly[styrene] (PS) prepared by the RAFT process and thus terminated with dithioesters were aminolyzed in the presence of S -3-butynyl methane thiosulfonate (MTS), which was synthesized in two steps. Analysis of the polymers by 2D NMR, UV,vis absorbance, and gel permeation chromatography revealed them to quantitatively carry acetylene end groups connected with disulfide bridges, indicating that functional MTS reagents can be employed for end group functionalization of RAFT polymers. This versatile method is of advantage compared with conjugations with functional maleimides, where isolation of terminal thiols is often required but inexpedient for poly[(meth)acrylates] because their terminal thiols may undergo backbiting and thus avoid conjugation. The acetylene-terminated polymers were bound to an azide functionalized glass surface in a Cu(I) catalyzed cycloaddition. The modified surfaces exhibited water contact angles corresponding to the polarity of the attached polymers. In the case of the stimulus responsive polymers PNIPA and PDEGMA, the surfaces showed temperature-dependent contact angles. The disulfide bond connecting the polymers to the surface could be selectively cleaved and resulted in all surfaces having the same contact angle, independent of the nature of the polymer prior attached to the surface. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3118,3130, 2009 [source] Ferrocenyl-functionalized long chain branched polydienesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2009Frederik Wurm Abstract A convenient two-step approach for the synthesis of ferrocenyl-functionalized long chain branched polydienes, based on both butadiene and isoprene, respectively, is presented. Classical living anionic polymerization was used to synthesize different ABn type poly(diene) macromonomers with moderate molecular weights between 1700 and 3200 g/mol and narrow polydispersity. Quantitative end-capping with chlorodimethylsilane resulted in the desired ABn macromonomer structures. In the ensuing Pt-catalyzed hydrosilylation polyaddition, branched, functionalized polydienes were obtained by a concurrent ABn + AR type of copolymerization with mono- and difunctional ferrocenyl silanes (fcSiMe2H or fc2SiMeH). Molecular weights of the branched polymers were in the range of 10,000 to 44,000 g/mol (SEC/MALLS). Because of the large number of functional end groups, high loading with ferrocene units up to 63 wt % of ferrocene was achieved. Detailed studies showed full conversion of the functional silanes and incorporation into the branched polymer. Further studies using DSC, TGA, and cyclovoltammetry (CV) measurements have been performed. Electrochemical studies demonstrated different electrochemical properties for fcSiMe2 - and fc2SiMe-units. The CVs of polymers modified with diferrocenylsilane units exhibit the pattern of communicating ferrocenyl sites with two distinct, separate oxidation waves. The polymers were also deposited on an electrode surface and the electrodes investigated via CV, showing formation of electroactive films with promising results for the use of the materials in biosensors. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2518,2529, 2009 [source] High quantum yield photoluminescence of new polyamides containing oligo-PPV amino derivatives and related oligomersJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2009Antonio Roviello Abstract The synthesis and the chemical physical characterization of new photoluminescent (PL) chromophores and polymers are reported. Chromophores (oligo-PPV symmetric derivatives ending with amino groups) are strong blue emitters with a PL quantum yield of ,70% in dioxane solution. They have been used to prepare polyamides by reaction with aliphatic acyl dichlorides in which emitting and non emitting units are alternated. PL properties of the synthesized polyamides have been evaluated in solution and reveal a strong blue emission (PL quantum yield ,60%), To increase the solubility of these systems, oligomers have been purposely prepared and then characterized. They show a peculiar white emission when excited in DMF solution; to get insight into this interesting behavior, asymmetric monoacetylated chromophores have been prepared as model compounds for the chromophoric end groups of the polyamide chains. The emission spectra of these compounds reveal a broad excimeric yellow emission which is responsible, along with the blue emission of the inner chromophoric units, of the overall white emission of the oligomers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2677,2689, 2009 [source] A general strategy for highly efficient nanoparticle dispersing agents based on hybrid dendritic linear block copolymersJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 5 2009Robert Vestberg Abstract A modular approach to the synthesis of a library of hybrid dendritic-linear copolymers was developed based on RAFT polymerization from monodisperse dendritic macroRAFT agents. By accurately controlling the molecular weight of the linear block, generation number of the dendrimer and the nature of the dendritic chains ends, the performance of these hybrid block copolymers as dispersing agents was optimized for a range of nanoparticles. For titanium dioxide nanoparticles, dispersion in a poly(methyl methacrylate) matrix was maximized with a second generation dendrimer containing four carboxylic acid end groups, and the quality of dispersion was observed to be superior to commercial dispersing agents for TiO2. This approach also allowed novel hybrid dendritic-linear dispersing agents to be prepared for the dispersion of Au and CdSe nanoparticles based on disulphide and phosphine oxide end groups, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1237,1258, 2009 [source] High molar mass ethene/1-olefin copolymers synthesized with acenaphthyl substituted metallocene catalystsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 1 2008Erkki Aitola Abstract The influence of ligand structure on copolymerization properties of metallocene catalysts was elucidated with three C1 -symmetric methylalumoxane (MAO) activated zirconocene dichlorides, ethylene(1-(7, 9)-diphenylcyclopenta-[a]-acenaphthadienyl-2-phenyl-2-cyclopentadienyl)ZrCl2 (1), ethylene(1-(7, 9)-diphenylcyclopenta-[a]-acenaphthadienyl-2-phenyl-2-fluorenyl)ZrCl2 (2), and ethylene(1-(9)-fluorenyl-(R)1-phenyl-2-(1-indenyl)ZrCl2 (3). Polyethenes produced with 1/MAO had considerable, ca. 10% amount of trans -vinylene end groups, resulting from the chain end isomerization prior to the chain termination. When ethene was copolymerized with 1-hexene or 1-hexadecene using 1/MAO, molar mass of the copolymers varied from high to moderate (531,116 kg/mol) depending on the comonomer feed. At 50% comonomer feed, ethene/1-olefin copolymers with high hexene or hexadecene content (around 10%) were achievable. In the series of catalysts, polyethenes with highest molar mass, up to 985 kg/mol, were obtained with sterically most crowded 2/MAO, but the catalyst was only moderately active to copolymerize higher olefins. Catalyst 3/MAO produced polyethenes with extremely small amounts of trans -vinylene end groups and relatively low molar mass 1-hexene copolymers (from 157 to 38 kg/mol) with similar comonomer content as 1. These results indicate that the catalyst structure, which favors chain end isomerization, is also capable to produce high molar mass 1-olefin copolymers with high comonomer content. In addition, an exceptionally strong synergetic effect of the comonomer on the polymerization activity was observed with catalyst 3/MAO. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 373,382, 2008 [source] Fluorene-based liquid crystalline networks with linearly polarized blue emissionJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2007Marta Millaruelo Abstract A series of fluorene-based luminophores containing methacrylic end groups have been prepared and incorporated into uniaxially oriented liquid crystalline films by in situ photopolymerization. Various structural modifications on the 2-(4-cyanophenyl)fluorene core, which include alkyl chains at the 9-position and elongation of the rigid core with one additional phenyl ring, have been investigated to generate emitters with adjusted liquid crystal compatibility, improved luminescence and dichroic properties. Polarized blue-emitting films were produced that had an acceptable photostability, and it was found that the polarization emission was better for samples with low (5%) cross-linker contents. Polarization of the luminescence was favored by the liquid crystalline properties of the luminophore. In addition, the detrimental effect of the alkyl substituent at the fluorene core on the mesomorphism and on the emission polarization can be overcome by lengthening the ,-system. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4804,4817, 2007 [source] Copolymerization of norbornene and styrene catalyzed by a novel anilido,imino nickel complex/methylaluminoxane systemJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 18 2006Haiyang Gao Abstract Copolymerizations of norbornene with styrene were carried out with a catalytic system of anilido,imino nickel complex (ArNCHC6H4NAr)NiBr (Ar = 2,6-dimethylphenyl) and methylaluminoxane in toluene. The influence of the comonomer feed content and polymerization temperature on the conversion and composition of the copolymers with (ArNCHC6H4NAr)NiBr/methylaluminoxane was investigated. An increase in the initial styrene feed content led to an increase in the incorporated styrene content of the resulting copolymer. The determination of the reactivity ratios showed a much high reactivity for norbornene (reactivity ratio for styrene = 0.26, reactivity ratio for norbornene = 20.78), which was consistent with a coordination mechanism. NMR analysis of the end groups further confirmed that the chain was initiated through a styrene secondary insertion or a norbornene insertion into NiH and terminated through ,-H elimination from an inserted styrene unit. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5237,5246, 2006 [source] Effect of side-chain end groups on the optical, electrochemical, and photovoltaic properties of side-chain conjugated polythiophenesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2006Erjun Zhou Abstract Three new side-chain conjugated polythiophene derivatives, poly{3-[2-(3-methoxy-4-octyloxy-phenyl)-vinyl]-thiophene} (P3MOPVT), poly{3-[2-(3,5-dimethoxy-4-octyloxy-phenyl)-vinyl]-thiophene} (P3DMOPVT), and poly{3-[2-(3,4-dioctyloxy-phenyl)-vinyl]-thiophene} (P3DOPVT), were synthesized by Wittig-Hornor reaction and GRIM method and compared with poly{3-[2-(4-octyloxy-phenyl)-vinyl]-thiophene} (P3OPVT) for investigating the effect of the end groups of the conjugated side-chain on the properties of the polymers. Owing to the electron-donating ability of methoxy groups, the visible absorption peaks of P3MOPVT and P3DMOPVT solutions and films become stronger and red-shifted compared with P3OPVT. The electrochemical bandgaps of the four polymers are 2.15 eV for P3OPVT, 1.99 eV for P3MOPVT, 1.85 eV for P3DMOPVT, and 2.36 eV for P3DOPVT, respectively, which indicate that the electron-donating ability of the methoxy end group on the conjugated side chain of P3MOPVT and P3DMOPVT and the large steric hindrance of the two octyloxy end groups on the conjugated side chain of P3DOPVT have obvious influence on the electrochemical properties of the side-chain conjugated polythiophenes. Polymer solar cells were fabricated with a structure of ITO/PEDOT:PSS/Polymer:PCBM/LiF/Al. The best device, based on P3DMOPVT, shows a power conversion efficiency of 1.63% under the illumination of AM1.5, 80 mW/cm2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4916,4922, 2006 [source] Heteroarm H-shaped terpolymers through the combination of the Diels,Alder reaction and controlled/living radical polymerization techniquesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2006Hakan Durmaz Abstract Heteroarm H-shaped terpolymers (PS)(PtBA),PEO,(PtBA)(PS) and (PS)(PtBA),PPO,(PtBA)(PS) [where PS is polystyrene, PtBA is poly(tert -butyl acrylate), PEO is poly(ethylene oxide), and PPO is poly(propylene oxide)], containing PEO or PPO as a backbone and PS and PtBA as side arms, were prepared via the combination of the Diels,Alder reaction and atom transfer radical and nitroxide-mediated radical polymerization routes. Commercially available PEO or PPO containing bismaleimide end groups was reacted with a compound having an anthracene functionality, succinic acid anthracen-9-yl methyl ester 3-(2-bromo-2-methylpropionyloxy)-2-methyl-2-[2-phenyl-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)ethoxycarbonyl]propyl ester, with a Diels,Alder reaction strategy. The obtained macroinitiator with tertiary bromide and 2,2,6,6-tetramethylpiperidin-1-oxy functional end groups was used subsequently in the atom transfer radical polymerization of tert -butyl acrylate and in the nitroxide-mediated free-radical polymerization of styrene to produce heteroarm H-shaped terpolymers with moderately low molecular weight distributions (<1.31). The polymers were characterized with 1H NMR, ultraviolet, gel permeation chromatography, and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3947,3957, 2006 [source] H3PO4 in a direct synthesis of oligo,poly(ethylene phosphate)from ethylene glycolJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 7 2006Julia Pretula The direct reaction of H3PO4 with polyols has not yet been explored. In this preliminary note, we report on the reaction of H3PO4 with ethylene glycol. This reaction gives (according to the NMR spectra and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) a series of well-defined linear oligomers with end groups either from the glycol or from the monoester of H3PO4. In some macromolecules, there are also oligo(ethylene glycol) units present. The best results were observed with Sc(CF3SO3)3 used as a catalyst. [source] Gradient graft copolymers derived from PEO-based macromonomersJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2006Dorota Neugebauer Abstract Atom transfer radical polymerization (ATRP) of two poly(ethylene oxide) (PEO) macromonomers, with different polymerization degrees (DPn) and different end groups, was conducted in solution via the grafting through method. Selection of a PEO methacrylate with a methyl end-group (PEOMeMA, DPPEO = 23) and a PEO acrylate end-capped by a phenyl ring (PEOPhA, DPPEO = 4) for the copolymerization led to a spontaneous gradient of PEO grafts along the copolymer backbone. Such a composition was formed because of significantly different reactivities of the two PEO macromonomers. The resulting copolymer has PEOMeMA at one end of the polymer chain, gradually changing through hetero-sequences of PEOPhA at the other chain end. An increase in the initial feed ratio of PEO acrylate reduced the rate of change in the shape of the gradient. Amorphous,crystalline structure in the copolymers was demonstrated by DSC and WAXS. The mechanical measurements of copolymers consisting of an amorphous PEOPhA and crystallizable PEOMeMA segments indicated elastomeric properties in the range of a soft rubber (G, , 104 Pa, G, , G,). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1347,1356, 2006 [source] Mechanistic investigations of antimony-catalyzed polycondensation in the synthesis of poly(ethylene terephthalate)JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2006Faissal-Ali El-Toufaili Abstract The chemical aspects of poly(ethylene terephthalate) synthesis via the antimony-catalyzed polycondensation of hydroxy ethylene terephthalate end groups were studied to elucidate its mechanism. A polycondensation mechanism was proposed in which activation occurs by the formation of a chelate ligand on antimony composed of the hydroxyl end group and alcoholic oxygen of the ester of the same end group. The rate-determining step of the polycondensation reaction was concluded to be the coordination of a second chain end to antimony. The low activity of antimony at a high concentration of hydroxyl end groups was proposed to result from the competition between hydroxyl end groups and the chelate structure leading to the transition state. The high selectivity of antimony is probably due to its relatively low Lewis acidity. Moreover, antimony was found to stabilize hydroxyl end groups against degradation by preventing their complexation to carbonyl functionalities. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1049-1059, 2006 [source] Amphiphilic star-block copolymers based on a hyperbranched core: Synthesis and supramolecular self-assemblyJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 24 2005Zhifeng Jia Abstract Novel amphiphilic star-block copolymers, star poly(caprolactone)- block -poly[(2-dimethylamino)ethyl methacrylate] and poly(caprolactone)- block -poly(methacrylic acid), with hyperbranched poly(2-hydroxyethyl methacrylate) (PHEMA,OH) as a core moiety were synthesized and characterized. The star-block copolymers were prepared by a combination of ring-opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA,OH with 18 hydroxyl end groups on average was used as an initiator for the ring-opening polymerization of ,-caprolactone to produce PHEMA,PCL star homopolymers [PHEMA = poly(2-hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA,PCL were converted to 2-bromoesters, and this gave rise to macroinitiator PHEMA,PCL,Br for ATRP. Then, 2-dimethylaminoethyl methacrylate or tert -butyl methacrylate was polymerized from the macroinitiators, and this afforded the star-block copolymers PHEMA,PCL,PDMA [PDMA = poly(2-dimethylaminoethyl methacrylate)] and PHEMA,PCL,PtBMA [PtBMA = poly(tert -butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert -butyl ester groups of the poly(tert -butyl methacrylate) blocks gave the star-block copolymer PHEMA,PCL,PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star-block copolymers could self-assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534,6544, 2005 [source] Dendrimers as scaffolds for multifunctional reversible addition,fragmentation chain transfer agents: Syntheses and polymerizationJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 23 2004Xiaojuan Hao Abstract The synthesis and characterization of novel first- and second-generation true dendritic reversible addition,fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3-benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z-group architecture based on 1,1,1-hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free-radical polymerization at 60 °C. The novel dendrimer-based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number-average molecular weight (Mn) with the monomer,polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol,1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol,1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1-hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star-shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star-shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877,5890, 2004 [source] Biodegradable polymers with variable architectures via ring-expansion polymerizationJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2004Hans R. Kricheldorf Abstract Kinetically controlled ring-expansion polymerizations (REPs) are defined syntheses generating cyclic oligomers and polymers without linear intermediates and without equilibration reactions. This review reports syntheses of cyclic metal alkoxides and their use as initiators for REPs of lactones, cyclic diesters, and cyclocarbonates. In addition to homopolyesters, telechelic oligoesters or polyesters, random copolyesters, and A,B,A triblock copolymers can be prepared by these REPs. The in situ combination of REPs with condensation (mostly acylation) reactions allows a broad variation of end groups. The in situ combination of REPs with polycondensation enables various chain-extension reactions, including the syntheses of multiblock copolymers. With spirocyclic initiators, four-armed stars with functional end groups may be prepared. The in situ combination of REPs with condensation reactions of trifunctional or multifunctional reagents makes a broad variety of networks accessible. The average segment lengths may be controlled via the monomer/initiator ratios of the REP. All materials produced via the aforementioned REP processes are biodegradable and nontoxic, and this allows for biomedical and pharmaceutical applications. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4723,4742, 2004 [source] |