Affinity Capture (affinity + capture)

Distribution by Scientific Domains


Selected Abstracts


The Identification of an Adenovirus Receptor by Using Affinity Capture and Mass Spectrometry

CHEMBIOCHEM, Issue 8 2004
Sunia A. Trauger Dr.
Abstract A tandem mass spectrometry-based approach is demonstrated for detecting a receptor for Ad37, one of the causative agents for epidemic keratoconjunctivitis. Partial purification of membrane glycoproteins was performed by using lectin-affinity chromatography and SDS-PAGE. Gel bands that were shown to bind Ad37 by using Viral Overlay Protein Blot Assay (VOPBA) were excised, proteolyzed and analyzed by using nanoLC-MS/MS to identify putative receptors contained in a mixture of proteins. Four candidate receptors were identified among approximately 50 proteins based on a search against a protein database. Inhibition of gene delivery mediated by an Ad37 vector, with antibodies against the glycoproteins identified by tandem mass spectrometry, strongly indicated that Membrane Cofactor Protein (MCP), a member of the complement regulatory family of proteins, is the receptor. This rapid and sensitive MS/MS-based strategy is perceived to have wide potential applications for the detection of viral receptors. [source]


Affinity capture using chimeric membrane proteins bound to magnetic beads for rapid ligand screening by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 6 2009
Christian Legros
The rapid and specific detection of therapeutically important ligands in complex mixtures, that may bind to membrane proteins, remains challenging for many research laboratories and pharmaceutical industries. Through its use in the development of screening assays, mass spectrometry (MS) is currently experiencing a period of tremendous expansion. In the study presented here, we took advantage of the remarkable stability properties of a bacterial membrane protein, the KcsA K+ channel, produced in E. coli and purified as a tetrameric protein in the presence of a detergent. This membrane protein can subserve as a molecular template to display the pore-forming region of human K+ channels, which are considered as targets in the search for inhibitory ligands. The engineered chimeric proteins were linked to metal-bound magnetic beads, for the screening of complex peptide mixtures, such as that of scorpion venoms. The affinity-captured scorpion toxins were eluted prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), and to nano-electrospray ionization tandem mass QqTOF mass spectrometry (MS/MS) analysis. The de novo sequence of the toxins was deduced by combining the MS/MS fragmentation of the reduced form (up to the 33 first residues) and the trypsin digest peptides of the native toxins. This affinity-capture screening assay led to the isolation and characterization of potent and specific ligands of the human K+ channel, Kv1.3. The affinity-capture procedure is fast and reproducible. When linked to magnetic beads, the chimeric membrane protein can be re-used several times without losing any of its selectivity or specificity. This assay also benefits from the fact that it requires minimal amounts of animal venoms or complex mixtures, which can be expensive or difficult to procure. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Rapid separation of protein isoforms by capillary zone electrophoresis with new dynamic coatings

ELECTROPHORESIS, Issue 11 2005
William W. P. Chang
Abstract Many cellular functions are regulated through protein isoforms. Changes in the expression level or regulatory dysfunctions of isoforms often lead to developmental or pathological disorders. Isoforms are traditionally analyzed using techniques such as gel- or capillary-based isoelectric focusing. However, with proper electroosmotic flow (EOF) control, isoforms with small pI differences can also be analyzed using capillary zone electrophoresis (CZE). Here we demonstrate the ability to quickly resolve isoforms of three model proteins (bovine serum albumin, transferrin, ,1 -antitrypsin) in capillaries coated with novel dynamic coatings. The coatings allow reproducible EOF modulation in the cathodal direction to a level of 10 -9 m2V -1s -1. They also appear to inhibit protein adsorption to the capillary wall, making the isoform separations highly reproducible both in peak areas and apparent mobility. Isoforms of transferrin and ,1 -antitrypsin have been implicated in several human diseases. By coupling the CZE isoform separation with standard affinity capture assays, it may be possible to develop a cost-effective analytical platform for clinical diagnostics. [source]


A genome-inspired DNA ligand for the affinity capture of insulin and insulin-like growth factor-2

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 10 2009
Junfeng Xiao
Abstract The insulin-linked polymorphic region (ILPR) of the human insulin gene contains tandem repeats of similar G-rich sequences, some of which form intramolecular G-quadruplex structures in vitro. Previous work showed affinity binding of insulin to an intramolecular G-quadruplex formed by ILPR variant a. Here, we report on interactions of insulin and the highly homologous insulin-like growth factor-2 (IGF-2) with ILPR variants a, h, and i. Circular dichroism indicated intramolecular G-quadruplex formation for variants a and h. Affinity MALDI MS and surface plasmon resonance were used to compare protein capture and binding strengths. Insulin and IGF-2 exhibited high binding affinity for variants a and h but not i, indicating the involvement of intramolecular G-quadruplexes. Interaction between insulin and variant a was unique in the appearance of two binding interactions with KD , 10,13 M and KD , 10,7 M, which was not observed for insulin with variant h (KD , 10,8 M) or IGF-2 with either variant (KDs , 10,9 M). The results provide a basis for the design of DNA binding ligands for insulin and IGF-2 and support a new approach to discovery of DNA affinity binding ligands based on genome-inspired sequences rather than the traditional combinatorial selection route to aptamer discovery. [source]


LC-MS analysis for the components captured by ECV304 cell from extract of Aconitum szechenyianum Gay.

BIOMEDICAL CHROMATOGRAPHY, Issue 4 2009
Jiang-Feng Yuan
Abstract A novel method of cell affinity screening (CAS), cell affinity capture coupled with LC-MS analysis, was developed for screening the bioactive compounds related to cardiovascular diseases from the natural product libraries. One of the major characteristics lies in its function in affinity-capturing and separating the bioactive components from the natural product libraries in vitro. Another characteristic is its use in analyzing and identifying the target compounds, by employing high-performance liquid chromatography and mass spectrometry. CAS was used for screening the bioactive components from the alkaloid extract derived from Aconitum szechenyianum Gay. Of the five components found to be bound to the oxidative-damaged endothelial cells, the two compounds identified, mesaconitine and aconitine, were recognized in the literature as being related to cardiovascular diseases. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Microbial bio-production of a recombinant stimuli-responsive biosurfactant

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009
W. Kaar
Abstract Biosurfactants have been the subject of recent interest as sustainable alternatives to petroleum-derived compounds in areas ranging from soil remediation to personal and health care. The production of naturally occurring biosurfactants depends on the presence of complex feed sources during microbial growth and requires multicomponent enzymes for synthesis within the cells. Conversely, designed peptide surfactants can be produced recombinantly in microbial systems, enabling the generation of improved variants by simple genetic manipulation. However, inefficient downstream processing is still an obstacle for the biological production of small peptides. We present the production of the peptide biosurfactant GAM1 in recombinant E. coli. Expression was performed in fusion to maltose binding protein using chemically defined minimal medium, followed by a single-step affinity capture and enzymatic cleavage using tobacco etch virus protease. Different approaches to the isolation of peptide after cleavage were investigated, with special emphasis on rapid and simple procedures. Solvent-, acid-, and heat-mediated precipitation of impurities were successfully applied as alternatives to post-cleavage chromatographic peptide purification, and gave peptide purities exceeding 90%. Acid precipitation was the method of choice, due to its simplicity and the high purification factor and recovery rate achieved here. The functionality of the bio-produced peptide was tested to ensure that the resulting peptide biosurfactant was both surface active and able to be triggered to switch between foam-stabilizing and foam-destabilizing states. Biotechnol. Bioeng. 2009;102: 176,187. © 2008 Wiley Periodicals, Inc. [source]