Afferent Information (afferent + information)

Distribution by Scientific Domains


Selected Abstracts


Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009
Kiyotaka Kamibayashi
Abstract Although phasic modulation of the corticospinal tract excitability to the lower limb muscles has been observed during normal walking, it is unclear to what extent afferent information induced by walking is related to the modulation. The purpose of this study was to test the corticospinal excitability to the lower limb muscles by using transcranial magnetic stimulation (TMS) and transcranial electrical stimulation of the motor cortex while 13 healthy subjects passively stepped in a robotic driven-gait orthosis. Specifically, to investigate the effect of load-related afferent inputs on the corticospinal excitability during passive stepping, motor evoked potentials (MEPs) in response to the stimulation were compared between two passive stepping conditions: 40% body weight unloading on a treadmill (ground stepping) and 100% body weight unloading in the air (air stepping). In the rectus femoris, biceps femoris and tibialis anterior (TA) muscles, electromyographic activity was not observed throughout the step cycle in either stepping condition. However, the TMS-evoked MEPs of the TA muscle at the early- and late-swing phases as well as at the early-stance phase during ground stepping were significantly larger than those observed during air stepping. The modulation pattern of the transcranial electrical stimulation-evoked MEPs was similar to that of the TMS-evoked MEPs. These results suggest that corticospinal excitability to the TA is facilitated by load-related afferent inputs. Thus, these results might be consistent with the notion that load-related afferent inputs play a significant role during locomotor training for gait disorders. [source]


,Protective premedication': an option with gabapentin and related drugs?

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 9 2004
A review of gabapentin, pregabalin in the treatment of post-operative pain
Substantial progress has been made during the last decades in our understanding of acute pain mechanisms, and this knowledge has encouraged the search for novel treatments. Of particular interest has been the observation that tissue injury initiates a number of modulations of both the peripheral and the central pain pathways, which convert the system from a ,physiological' to a ,pathological' mode of processing afferent information. Gabapentin, which binds to the ,2, subunit of the voltage-dependent calcium channel, is active in animal models of ,pathological' but not in models of ,physiological' pain. Consequently, attention has so far been focused on neuropathic pain as a target for the clinical use of gabapentin and analogues. Recently, several reports have indicated that gabapentin may have a place in the treatment of post-operative pain. This article presents a brief summary of the potential mechanisms of post-operative pain, and a systematic review of the available data of gabapentin and pregabalin for post-operative analgesia. It is concluded that the results with gabapentin and pregabalin in post-operative pain treatment published so far are promising. It is suggested that future studies should explore the effects of ,protective premedication' with combinations of various antihyperalgesic and analgesic drugs for post-operative analgesia. [source]


Impaired modulation of the vestibulo-ocular reflex in Huntington's disease

MOVEMENT DISORDERS, Issue 1 2004
BSc(Hons), Joanne Fielding BA
Abstract The vestibulo-ocular reflex (VOR) stabilizes gaze during movement, in conjunction with other afferent information: visual, proprioceptive, and somaesthetic. The reflex can either be augmented or suppressed, depending on visual requirements, and undergoes long-term adaptation to compensate for physical changes in the subject. Importantly, over relatively short periods of time, the VOR should function consistently under the same circumstances. This study examines VOR function in patients with Huntington's disease (HD), with a view to investigating cortical influences on the reflex. Horizontal eye movements were recorded in 9 patients with HD and 7 normal subjects, using the scleral search coil technique, in response to high frequency, unpredictable head rotations imposed manually. To establish base VOR function, recordings were made in darkness, without instruction, before and after wearing ×2 magnifying lenses for a period of 2 hours to adapt the reflex. Recordings were also made before adaptation, while fixating a stationary visual target (VOR augmentation), and while fixating a target moving with the head (VOR suppression). Although results suggest that the VOR is preserved in HD, with relatively normal gain values and appropriate augmentation and suppression of the reflex with visual input, patients were unable to adapt the VOR to altered visual conditions. This represents a novel finding in HD and suggests that cortical structures compromised in HD exert influences on the long-term adaptation of the VOR. © 2003 Movement Disorder Society [source]


Dystonia: A disorder of motor programming or motor execution?

MOVEMENT DISORDERS, Issue 6 2002
Petr Ka, ovský MD
Abstract For some time, dystonia has been seen as purely a motor disorder. Relatively novel concepts published approximately 10 years ago also presumed that in the development of dystonic dyskinesias, only motor behaviour was abnormal. Neurophysiological observations of various types of dystonic disorders, which were performed using sophisticated electromyography, polymyography, H-reflex examination, long-latency reflex, etc., as well as new insights into the behaviour of dystonia, have urged the inclusion of sensory (particularly somatosensory) mechanisms into the pathophysiological background of dystonia. The major role has been considered to be played by abnormal proprioceptive input by means of the Ia proprioceptive afferents, with the source of this abnormality found in the abnormal processing of muscle spindle afferent information. However, neurophysiological investigations have also provided evidence that the abnormality in the central nervous system is located not only at the spinal and subcortical level, but also at the cortical level; specifically, the cortical excitability and intracortical inhibition have been revealed as abnormal. This evidence was revealed by SEP recordings, paired transcranial magnetic stimulation recordings, and BP and CNV recordings. The current concept of dystonic movement connects the abnormal function of somatosensory pathways and somatosensory analysers with the dystonic performance of motor action, which is based on the abnormality of sensorimotor integration. © 2002 Movement Disorder Society [source]


Neurological rehabilitation: a science struggling to come of age

PHYSIOTHERAPY RESEARCH INTERNATIONAL, Issue 2 2002
Valerie Pomeroy
Abstract Over the last few decades, there have been considerable improvements in the outcome of stroke patients both as regards mortality and disability. At least some of these improvements can be attributed to better organization of services and improved rehabilitation. Many patients, however, remain severely disabled and we will need to develop new strategies in which the focus will be on reversing impairments rather than simply helping patients to adapt to unaltered impairments. For this to happen, neurological rehabilitation research will have to develop therapies that have a clearly defined rationale and are rooted in neurosciences, are clinically described, are addressed to a well-characterized target population and are evaluated using appropriate outcome measures. Few studies at present meet all these criteria. The recent revolution in our understanding of the nervous system as being soft-wired, of the potential for recovery through reorganization and of the central role of afferent information associated with normal activity is ground for optimism and indicates the direction in which future therapies should be sought. The paper considers some approaches to providing appropriate afferent information, including inputs such as that from electrotherapy, novel approaches to assisted activity and constraint-induced therapy. We are on the verge of a revolution in neurological rehabilitation. If we exploit the new understanding of the nervous system arising from basic neurosciences in developing and evaluating therapies we should be able to build on the achievements of the last few decades so that fewer of our patients have to carry the burden of severe disability. Copyright © 2002 Whurr Publishers Ltd. [source]


Evidence that 5-hydroxytryptamine7 receptors play a role in the mediation of afferent transmission within the nucleus tractus solitarius in anaesthetized rats

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2009
Diana Oskutyte
Background and purpose:, Central 5-hydroxytryptamine (5-HT)-containing pathways utilizing 5-HT7 receptors are known to be critical for the mediation of cardiovascular reflexes. The nucleus tractus solitarius (NTS) is a site involved in the integration of cardiovascular afferent information. The present experiments examined the involvement of the 5-HT7 receptor in the processing of cardiovascular reflexes in the NTS. Experimental approach:, In anaesthetized rats extracellular recordings were made from 104 NTS neurones that were excited by electrical stimulation of the vagus nerve and/or activation of cardiopulmonary afferents. Drugs were applied ionophoretically in the vicinity of these neurones. Key results:, The non-selective 5-HT7 receptor agonist 5-carboxamidotryptamine maleate (5-CT) applied to 78 neurones increased the firing rate in 18 by 59% and decreased it in 38 neurones by 47%. Similarly, the 5-HT1A agonist 8-OH-DPAT applied to 20 neurones had an excitatory (8), inhibitory (7) or no effect (5) on the 20 neurones tested. In the presence of the 5-HT7 antagonist SB 258719 the 5-CT excitation was attenuated. Furthermore, the excitatory response of NTS neurones evoked by electrical stimulation of the vagus nerve or activation of cardiopulmonary afferents with intra atrial phenylbiguanide was attenuated by SB 258719. The inhibitory action of 5-CT was unaffected by SB 258719 and the 5-HT1A antagonist WAY-100635. WAY-100635 failed to have any effect on 5-CT and vagal afferent-evoked excitations. Conclusions and implications:, Vagal afferent-evoked excitation of NTS neurones can be blocked by SB 258719, a selective 5-HT7 antagonist. This observation further supports the involvement of 5-HT neurotransmission in NTS afferent processing. [source]