Encapsulated Dye (encapsulated + dye)

Distribution by Scientific Domains


Selected Abstracts


Tailoring Macromolecular Expression at Polymersome Surfaces

ADVANCED FUNCTIONAL MATERIALS, Issue 18 2009
Adam Blanazs
Abstract A series of amphiphilic ABC triblock copolymers are synthesized by atom transfer radical polymerization, wherein the ,A' and ,C' blocks are hydrophilic and the pH-sensitive ,B' block can be switched from hydrophilic in acidic solution to hydrophobic at pH 7. Careful addition of base to the molecularly dissolved copolymer in acidic solution readily induces the self-assembly of such triblock copolymers at around neutral pH to form pH-sensitive polymersomes (a.k.a. vesicles) with asymmetric membranes. By systematic variation of the relative volume fractions of the ,A' and ,C' blocks, the chemical nature of the polymer chains expressed at the interior or exterior corona of the polymersomes can be selected. Treatment of primary human dermal fibroblast cells with these asymmetric polymersomes demonstrates the biological consequences of such spatial segregation, with both polymersome cytotoxicity and endocytosis rates being dictated by the nature of the polymersome surface chemistry. The pH-sensitive nature of the polymersomes readily facilitates their dissociation after endocytosis due to the relatively low endosomal pH, which results in the rapid release of an encapsulated dye. Selective binding of anionic substrates such as DNA within the inner cationic polymersome volume, coupled with a biocompatible exterior, leads to potential gene delivery applications for these pH-sensitive asymmetric nanovectors. [source]


Microencapsulation of a functional dye and its UV crosslinking controlled releasing behavior

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2009
Gangqiang Li
Abstract A new family of microcapsules containing photopolymerizable tripropylene glycol diacrylate (TPGDA) was synthesized by using interfacial polymerization. The release behavior of encapsulated dye could be controlled easily by changing the crosslink density of network formed from TPGDA. The chemical structure and properties of microcapsules were characterized by Fourier Transform infrared spectroscopy, scanning electron microscope, differential scanning calorimetry, optical microscope, wide angle X-ray diffraction and UV-visible spectrophotometer. The results demonstrate that the higher agitation rate results in a smaller particle size with a narrow size distribution. When core/shell ratio is low, the surface of the microcapsules becomes smooth. Additionally, it was found that UV radiation time is most effective factor to change the CC double bond conversion ratio. After microcapsules were synthesized, the release speed could be changed according to requirement by exposing them to UV light for minutes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3630,3639, 2009 [source]


Design of a pH-sensitive pore-forming peptide with improved performance

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 1 2004
D.H. Haas
Abstract:, GALA is a 30 residue synthetic peptide designed to interact with membranes in a pH-sensitive manner, with potential applications for intracellular drug and gene delivery. Upon reduction of the pH from neutral to acidic, GALA switches from random coil to , -helix, inserts into lipid bilayers, and forms oligomeric pores of defined size. Its simple sequence and well-characterized behavior make the peptide an excellent starting point to explore the effects of sequence on structure, pH sensitivity, and membrane affinity. We describe synthesis and characterization of two derivatives of GALA, termed GALAdel3E and YALA. GALAdel3E has a deletion of three centrally located glutamate residues from GALA, while YALA replaces one glutamate residue with the unusual amino acid 3,5-diiodotyrosine. Both derived peptides retain pH sensitivity, showing no ability to cause leakage of an encapsulated dye from unilamellar vesicles at pH 7.4 but substantial activity at pH 5. Unlike GALA, neither peptide undergoes a conformational change upon reduction of the pH, remaining , -helical throughout. Interestingly, the pH at which the peptides activate is shifted, with GALA becoming active at pH ,5.7, GALAdel3E at pH ,6.2, and YALA at pH ,6.7. Furthermore, the peptides GALAdel3E and YALA show improved activity compared with GALA for cholesterol-containing membranes, with YALA retaining the greatest activity. Improved activity in the presence of cholesterol and onset of activity in the critical range between pH 6 and 7 may make these peptides useful in applications requiring intracellular delivery of macromolecules, such as gene delivery or anti-cancer treatments. [source]


A Cascade FRET-Mediated Ratiometric Sensor for Cu2+Ions Based on Dual Fluorescent Ligand-Coated Polymer Nanoparticles

CHEMISTRY - A EUROPEAN JOURNAL, Issue 33 2009
Michel Frigoli Dr.
Abstract Core-shell type dual fluorescent nanoparticles (NPs) in the 16,nm diameter range with a selective ligand (cyclam) attached to the surface and two fluorophores,9,10-diphenyl-anthracene (donor, D) and pyrromethene PM,567 (acceptor, A),embedded within the polymer core were synthesized and their fluorescent and copper-sensing properties were studied and compared to single D -doped and A -doped NPs. The acceptor (A) and donor (D) dyes were chosen to allow two sequential Förster resonance energy transfer (FRET) processes from D to A and from the encapsulated dyes to copper complexes that form at the surface and act as quenchers. NPs with different D/A loads were readily obtained by two consecutive entrapments of the dyes. Dual NPs present tunable fluorescence emission that is dependent on the doping ratio. FRET from D to A results in sensitized emission from A upon excitation of D, with FRET efficiencies reaching 80,% at high acceptor loads. A 9-fold amplification of the signal of A is observed at high D -to- A ratios. Single- and dual-dye-doped NPs were used to detect the presence of cupric ions in water by using the quenching of fluorescence as a transduction signal. In accordance with the spectral overlaps and the values of the critical distance (R0) of D, and A,copper complex pairs, the acceptor is much more sensitive than the donor. In dual fluorescent NPs, the sensitized emission of A is efficiently attenuated whereas the remaining emission of D is much less affected, allowing the detection of copper in a ratiometric manner upon excitation at a single (D) wavelength. Dual-dye-doped NPs with the highest acceptor loads (23,A -per-NP) were found to be the most sensitive for the detection of copper over a wide range of concentrations (20,nM to 8.5,,M). Owing to its great convenience and modularity, the cascade FRET strategy based on dual fluorescent NPs holds great promise for the design of various sensing nanodevices. [source]