Enzyme Electrode (enzyme + electrode)

Distribution by Scientific Domains


Selected Abstracts


Using the Aggregation of Latex Polymers in the Fabrication of Reproducible Enzyme Electrodes

ELECTROANALYSIS, Issue 17 2003
Wibowo Rahmat
Abstract An enzyme electrode for glucose is described as a model system to demonstrate a fabrication method using latex aggregation and entrapment of enzyme. Electrosterically-stabilized latex particles synthesized by emulsion polymerization in batch from acrylic acid, methyl methacrylate and butyl acrylate, and glucose oxidase were coagulated together at pH,5.5 with ethanol. A platinum disk electrode dipped in the solution becomes coated with latex/enzyme. The relative thickness of the film and relative amount of enzyme may be controlled by the time the electrode is in contact with the solution. The enzyme was then immobilized by covalent attachment of amine groups to carboxylic moieties in the polymer using 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide hydrochloride and N -hydroxysuccinimide. Five minutes contact with the latex/enzyme solution and subsequent amide coupling, gave electrodes with a reproducibility of 5.7% RSD, a wide dynamic range (0,100,mM) and good storage properties. [source]


Organic Phase PPO Biosensors Prepared by Multilayer Deposition of Enzyme and Alginate Through Avidin-Biotin Interactions

ELECTROANALYSIS, Issue 24 2004
S. Cosnier
Abstract Films of electrogenerated polypyrrole and hydrophilic alginate, both functionalized with biotin moieties, were used to allow for the transfer of polyphenol oxidase activity in organic media. Enzyme electrodes, based on multilayered structures, were protected at the molecular level by the affinity binding of alginate as a hydrophilic additive, and were then transferred into chlorobenzene, dichloromethane, chloroform, ethyl acetate or acetonitrile. The biosensor performance for the detection of catechol at ,0.2,V was investigated, highlighting the main influence of the hydrophobicity of the solvent and, to a lesser extent, the dielectric constant. The effect of the substrate hydrophobicity on the biosensor response was examined in chlorobenzene. [source]


Biosensor Based on Self-Assembling Glucose Oxidase and Dendrimer-Encapsulated Pt Nanoparticles on Carbon Nanotubes for Glucose Detection

ELECTROANALYSIS, Issue 6 2007
Lihuan Xu
Abstract A novel amperometric glucose biosensor based on layer-by-layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt-DENs layer and an anionic GOx layer. Transmission electron microscopy images and ,-potentials proved the formation of layer-by-layer nanostructures on carboxyl-functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt-DENs toward H2O2 and special three-dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5,,M, a wide linear range of 5,,M,0.65,mM, a short response time (within 5,s), and high sensitivity (30.64,,A mM,1,cm,2) and stability (80% remains after 30 days). [source]


Flexible Ultrathin PolyDVB/EVB Composite Membranes for the Optimization of a Whole Blood Glucose Sensor

ELECTROANALYSIS, Issue 4 2007
Kerry Bridge
Abstract An ultrathin composite membrane has been developed as the outer covering barrier in a model amperometric glucose oxidase enzyme electrode. The membrane was formed by cathodic electropolymerization of divinylbenzene/ethylvinylbenzene at the surface of a gold coated polyester support membrane. Permeability coefficients were determined for O2 and glucose across membranes with a range of polymer thicknesses. Anionic interferents (such as ascorbate), were screened from the working electrode via a charge exclusion mechanism. The enzyme electrode showed an initial 10% signal drift when first exposed to whole human blood over a period of 2 hours, after which responses remained essentially stable. Whole blood patient glucose determinations yielded a correlation coefficient of r2=0.99 compared to standard hospital analyses. [source]


Polydivinylbenzene/Ethylvinylbenzene Composite Membranes for the Optimization of a Whole Blood Glucose Sensor

ELECTROANALYSIS, Issue 1 2006
Kerry Bridge
Abstract A novel ultra thin polydivinylbenzene/ethylvinylbenzene composite membrane has been developed for use as the outer covering barrier in a model amperometric glucose oxidase enzyme electrode. The composite membrane was formed via the cathodic electropolymerization of divinylbenzene/ethylvinylbenzene at the surface of gold sputter coated host alumina membranes, (serving solely as a mechanical support for the thin polymer film). Permeability coefficients were determined for the enzyme substrates, O2 and glucose, across composite membranes formed with a range of polymer thicknesses. Due to the highly substrate diffusion limiting nature of the composite membrane, it was found that anionic interferents present in blood (such as ascorbate), were effectively screened from the working electrode via a charge exclusion mechanism, in a manner similar to previous findings within our laboratory. The enzyme electrode showed an initial 32% signal drift when first exposed to whole human blood over a period of 2 hours, after which time enzyme electrode responses remained essentially stable. Whole blood patient glucose determinations yielded a correlation coefficient of r2=0.97 in comparison to standard hospital analyses. [source]


Amperometric Detection of Catecholamine Neurotransmitters Using Electrocatalytic Substrate Recycling at a Laccase Electrode

ELECTROANALYSIS, Issue 2 2005
Yvonne Ferry
Abstract An enzyme electrode based on the coimmobilization of an osmium redox polymer and laccase on glassy carbon electrodes has been applied to ultra sensitive amperometric detection of the catecholamine neurotransmitters dopamine, epinephrine and norepinephrine, resulting in nanomolar detection limits, as low as 4,nM for dopamine. The sensitivity of the electrode is due to signal amplification via oxidation of the catecholamine by the immobilized laccase, which is regenerated by concomitant reduction of oxygen to water, coupled to the electrocatalytic re-reduction of the oxidized catecholamine by the osmium redox complex: electrocatalytic substrate recycling. In addition because the sensor can be operated in reductive mode at ,0.2,V (vs. Ag/AgCl), noise and interferences are diminished. Combined with its high sensitivity this enzyme electrode also exhibited excellent selectivity allowing the detection of catecholamines in the presence of ascorbic acid. However, differentiation between the current responses achieved for the three catecholamines is not possible. The effective mode of constant recycling, resulting in amplification of the current response, of the laccase enzyme electrode sensor combined with the inherent advantages of using electrochemical techniques holds great promise for the future of catecholamine detection and monitoring. [source]


Using the Aggregation of Latex Polymers in the Fabrication of Reproducible Enzyme Electrodes

ELECTROANALYSIS, Issue 17 2003
Wibowo Rahmat
Abstract An enzyme electrode for glucose is described as a model system to demonstrate a fabrication method using latex aggregation and entrapment of enzyme. Electrosterically-stabilized latex particles synthesized by emulsion polymerization in batch from acrylic acid, methyl methacrylate and butyl acrylate, and glucose oxidase were coagulated together at pH,5.5 with ethanol. A platinum disk electrode dipped in the solution becomes coated with latex/enzyme. The relative thickness of the film and relative amount of enzyme may be controlled by the time the electrode is in contact with the solution. The enzyme was then immobilized by covalent attachment of amine groups to carboxylic moieties in the polymer using 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide hydrochloride and N -hydroxysuccinimide. Five minutes contact with the latex/enzyme solution and subsequent amide coupling, gave electrodes with a reproducibility of 5.7% RSD, a wide dynamic range (0,100,mM) and good storage properties. [source]


Organically Modified Sol-Gel/Chitosan Composite Based Glucose Biosensor

ELECTROANALYSIS, Issue 7 2003
Xu Chen
Abstract A new type of organically modified sol-gel/chitosan composite material was developed and used for the construction of glucose biosensor. This material provided good biocompatibility and the stabilizing microenvironment around the enzyme. Ferrocene was immobilized on the surface of glassy carbon electrode as a mediator. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The effects of enzyme-loading, buffer pH, applied potential and several interferences on the response of the enzyme electrode were investigated. The simple and low-cost glucose biosensor exhibited high sensitivity and good stability. [source]


Amperometric Glucose Biosensors Based on Glassy Carbon and SWCNT-Modified Glassy Carbon Electrodes

ELECTROANALYSIS, Issue 1 2008
Irene Carpani
Abstract Different carbonaceous materials, such as single-walled carbon nanotubes (SWCNTs) and glassy carbon submitted to an electrochemical activation at +1.80,V (vs. SCE) for 900,s, have been used with the aim of comparing their performances in the development of enzyme electrodes. Commercial SWCNTs have been pretreated with 2.2,M HNO3 for 20,h prior to use. The utility of activated GC as promising material for amperometric oxidase-based biosensors has been confirmed. With glucose oxidase (GOx) as a model enzyme, glucose was efficiently detected up to 1 mM without the use of a mediator. Both electrodes operated in stirred solutions of 0.1,M phosphate buffer (pH,5.5), containing dissolved oxygen, at a potential of ,0.40,V vs. SCE. Although the performances of the two carbonaceous materials were comparable, the biosensors based on activated GC were characterized by a practically unchanged response 40 days after the fabrication, a better signal to noise ratio, and a little worse sensitivity. In addition, the preparation procedure of such biosensors was more simple, rapid and reproducible. [source]


Carbon-Nanotube Based Electrochemical Biosensors: A Review

ELECTROANALYSIS, Issue 1 2005
Joseph Wang
Abstract This review addresses recent advances in carbon-nanotubes (CNT) based electrochemical biosensors. The unique chemical and physical properties of CNT have paved the way to new and improved sensing devices, in general, and electrochemical biosensors, in particular. CNT-based electrochemical transducers offer substantial improvements in the performance of amperometric enzyme electrodes, immunosensors and nucleic-acid sensing devices. The greatly enhanced electrochemical reactivity of hydrogen peroxide and NADH at CNT-modified electrodes makes these nanomaterials extremely attractive for numerous oxidase- and dehydrogenase-based amperometric biosensors. Aligned CNT "forests" can act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centers of enzymes. Bioaffinity devices utilizing enzyme tags can greatly benefit from the enhanced response of the biocatalytic-reaction product at the CNT transducer and from CNT amplification platforms carrying multiple tags. Common designs of CNT-based biosensors are discussed, along with practical examples of such devices. The successful realization of CNT-based biosensors requires proper control of their chemical and physical properties, as well as their functionalization and surface immobilization. [source]


Self-Assembled Graphene,Enzyme Hierarchical Nanostructures for Electrochemical Biosensing

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2010
Qiong Zeng
Abstract The self-assembly of sodium dodecyl benzene sulphonate (SDBS) functionalized graphene sheets (GSs) and horseradish peroxidase (HRP) by electrostatic attraction into novel hierarchical nanostructures in aqueous solution is reported. Data from scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction demonstrate that the HRP,GSs bionanocomposites feature ordered hierarchical nanostructures with well-dispersed HRP intercalated between the GSs. UV-vis and infrared spectra indicate the native structure of HRP is maintained after the assembly, implying good biocompatibility of SDBS-functionalized GSs. Furthermore, the HRP,GSs composites are utilized for the fabrication of enzyme electrodes (HRP,GSs electrodes). Electrochemical measurements reveal that the resulting HRP,GSs electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, low detection limit, and fast amperometric response. These desirable electrochemical performances are attributed to excellent biocompatibility and superb electron transport efficiency of GSs as well as high HRP loading and synergistic catalytic effect of the HRP,GSs bionanocomposites toward H2O2. As graphene can be readily non-covalently functionalized by "designer" aromatic molecules with different electrostatic properties, the proposed self-assembly strategy affords a facile and effective platform for the assembly of various biomolecules into hierarchically ordered bionanocomposites in biosensing and biocatalytic applications. [source]


One-Pot Preparation of Polymer,Enzyme,Metallic Nanoparticle Composite Films for High-Performance Biosensing of Glucose and Galactose

ADVANCED FUNCTIONAL MATERIALS, Issue 11 2009
Yingchun Fu
Abstract New polymer,enzyme,metallic nanoparticle composite films with a high-load and a high-activity of immobilized enzymes and obvious electrocatalysis/nano-enhancement effects for biosensing of glucose and galactose are designed and prepared by a one-pot chemical pre-synthesis/electropolymerization (CPSE) protocol. Dopamine (DA) as a reductant and a monomer, glucose oxidase (GOx) or galactose oxidase (GaOx) as the enzyme, and HAuCl4 or H2PtCl6 as an oxidant to trigger DA polymerization and the source of metallic nanoparticles, are mixed to yield polymeric bionanocomposites (PBNCs), which are then anchored on the electrode by electropolymerization of the remaining DA monomer. The prepared PBNC material has good biocompatibility, a highly uniform dispersion of the nanoparticles with a narrow size distribution, and high load/activity of the immobilized enzymes, as verified by transmission/scanning electron microscopy and electrochemical quartz crystal microbalance. The thus-prepared enzyme electrodes show a largely improved amperometric biosensing performance, e.g., a very high detection sensitivity (99 or 129,ľA cm,2 mM,1 for glucose for Pt PBNCs on bare or platinized Au), a sub-micromolar limit of detection for glucose, and an excellent durability, in comparison with those based on conventional procedures. Also, the PBNC-based enzyme electrodes work well in the second-generation biosensing mode. The proposed one-pot CPSE protocol may be extended to the preparation of many other functionalized PBNCs for wide applications. [source]


Wiring Enzymes in Nanostructures Built with Electrostatically Self-Assembled Thin Films

CHEMPHYSCHEM, Issue 1 2005
Ernesto J. Calvo Prof.
Abstract The construction of electrostatically self-assembled intelligent nanostructures on electrodes with redox enzyme layers and redox polymer molecular wires defined in space allowed the analysis of redox charge transport from the redox enzyme to the electrode along nanometric distances. Recent results on the electrical connection of enzymes to electrodes and perspectives of generating electrical signals from molecular recognition in integrated enzyme electrodes are discussed. [source]