Enzyme Design (enzyme + design)

Distribution by Scientific Domains


Selected Abstracts


A novel method for enzyme design

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 2 2009
Xiaolei Zhu
Abstract Rational design of enzymes is a stringent test of our understanding of protein structure and function relationship, which also has numerous potential applications. We present a novel method for enzyme design that can find good candidate protein scaffolds in a protein-ligand database based on vector matching of key residues. Residues in the vicinity of the active site were also compared according to a similarity score between the scaffold protein and the target enzyme. Suitable scaffold proteins were selected, and the side chains of residues around the active sites were rebuilt using a previously developed side-chain packing program. Triose phosphate isomerase (TIM) was used as a validation test for enzyme design. Selected scaffold proteins were found to accommodate the enzyme active sites and successfully form a good transition state complex. This method overcomes the limitations of the current enzyme design methods that use limited number of protein scaffold and based on the position of ligands. As there are a large number of protein scaffolds available in the Protein Data Band, this method should be widely applicable for various types of enzyme design. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009 [source]


An exciting but challenging road ahead for computational enzyme design

PROTEIN SCIENCE, Issue 10 2010
David Baker
No abstract is available for this article. [source]


New algorithms and an in silico benchmark for computational enzyme design

PROTEIN SCIENCE, Issue 12 2006
Alexandre Zanghellini
Abstract The creation of novel enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Here we describe two new algorithms for enzyme design that employ hashing techniques to allow searching through large numbers of protein scaffolds for optimal catalytic site placement. We also describe an in silico benchmark, based on the recapitulation of the active sites of native enzymes, that allows rapid evaluation and testing of enzyme design methodologies. In the benchmark test, which consists of designing sites for each of 10 different chemical reactions in backbone scaffolds derived from 10 enzymes catalyzing the reactions, the new methods succeed in identifying the native site in the native scaffold and ranking it within the top five designs for six of the 10 reactions. The new methods can be directly applied to the design of new enzymes, and the benchmark provides a powerful in silico test for guiding improvements in computational enzyme design. [source]


Expansion of substrate specificity by rational enzyme design

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2008
Article first published online: 17 DEC 200
No abstract is available for this article. [source]


Crystallization and preliminary crystallographic characterization of GumK, a membrane-associated glucuronosyltransferase from Xanthomonas campestris required for xanthan polysaccharide synthesis

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2006
Máximo Barreras
GumK is a membrane-associated inverting glucuronosyltransferase that is part of the biosynthetic route of xanthan, an industrially important exopolysaccharide produced by Xanthomonas campestris. The enzyme catalyzes the fourth glycosylation step in the pentasaccharide-P-P-polyisoprenyl assembly, an oligosaccharide diphosphate lipid intermediate in xanthan biosynthesis. GumK has marginal homology to other glycosyltransferases (GTs). It belongs to the CAZy family GT 70, for which no structure is currently available, and indirect biochemical evidence suggests that it also belongs to the GT-B structural superfamily. Crystals of recombinant GumK from X. campestris have been grown that diffract to 1.9,Å resolution. Knowledge of the crystal structure of GumK will help in understanding xanthan biosynthesis and its regulation and will also allow a subsequent rational approach to enzyme design and engineering. The multiwavelength anomalous diffraction approach will be used to solve the phase problem. [source]