Home About us Contact | |||
Enzymatically Active (enzymatically + active)
Selected AbstractsCloning and expression of murine enzymes involved in the salvage pathway of GDP- l -fucoseFEBS JOURNAL, Issue 1 2004GDP- l -fucose pyrophosphorylase, l -fucokinase In the salvage pathway of GDP- l -fucose, free cytosolic fucose is phosphorylated by l -fucokinase to form l -fucose-1-phosphate, which is then further converted to GDP- l -fucose in the reaction catalyzed by GDP- l -fucose pyrophosphorylase. We report here the cloning and expression of murine l -fucokinase and GDP- l -fucose pyrophosphorylase. Murine l -fucokinase is expressed as two transcripts of 3057 and 3270 base pairs, encoding proteins of 1019 and 1090 amino acids with predicted molecular masses of 111 kDa and 120 kDa respectively. Only the longer splice variant of l -fucokinase was enzymatically active when expressed in COS-7 cells. Murine GDP- l -fucose pyrophosphorylase has an open reading frame of 1773 base pairs encoding a protein of 591 amino acids with a predicted molecular mass of 65.5 kDa. GDP- l -fucose, the reaction product of GDP- l -pyrophosphorylase, was identified by HPLC and MALDI-TOF MS analysis. The tissue distribution of murine l -fucokinase and GDP- l -fucose pyrophosphorylase was investigated by quantitative real time PCR, which revealed high expression of l -fucokinase and GDP- l -fucose pyrophosphorylase in various tissues. The wide expression of both enzymes can also be observed from the large amount of data collected from a number of expressed sequence tag libraries, which indicate that not only the de novo pathway alone, but also the salvage pathway, could have a significant role in the synthesis of GDP- l -fucose in the cytosol. [source] Functional and structural analysis of five mutations identified in methylmalonic aciduria cbIB type,HUMAN MUTATION, Issue 9 2010Ana Jorge-Finnigan Abstract ATP:cob(I)alamin adenosyltransferase (ATR, E.C.2.5.1.17) converts reduced cob(I)alamin to the adenosylcobalamin cofactor. Mutations in the MMAB gene encoding ATR are responsible for the cblB type methylmalonic aciduria. Here we report the functional analysis of five cblB mutations to determine the underlying molecular basis of the dysfunction. The transcriptional profile along with minigenes analysis revealed that c.584G>A, c.349-1G>C, and c.290G>A affect the splicing process. Wild-type ATR and the p.I96T (c.287T>C) and p.R191W (c.571C>T) mutant proteins were expressed in a prokaryote and a eukaryotic expression systems. The p.I96T protein was enzymatically active with a KM for ATP and KD for cob(I)alamin similar to wild-type enzyme, but exhibited a 40% reduction in specific activity. Both p.I96T and p.R191W mutant proteins are less stable than the wild-type protein, with increased stability when expressed under permissive folding conditions. Analysis of the oligomeric state of both mutants showed a structural defect for p.I96T and also a significant impact on the amount of recovered mutant protein that was more pronounced for p.R191W that, along with the structural analysis, suggest they might be misfolded. These results could serve as a basis for the implementation of pharmacological therapies aimed at increasing the residual activity of this type of mutations. Hum Mutat 31:1033,1042, 2010. © 2010 Wiley-Liss, Inc. [source] Profiling bacterial survival through a water treatment process and subsequent distribution systemJOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2005D. Hoefel Abstract Aims:, To profile fractions of active bacteria and of bacteria culturable with routine heterotrophic plate count (HPC) methods through a typical water treatment process and subsequent distribution system. In doing so, investigate how water treatment affects both bacterial abundance and diversity, and reveal the identities of active bacteria not detected by traditional HPC culture. Methods and Results:, Profiling active fractions was performed by flow cytometric cell sorting of either membrane-intact (BacLightTM kit) or enzymatically active (carboxyfluorescein diacetate, CFDA) bacteria, followed by eubacterial 16S rDNA-directed PCR and denaturing gradient gel electrophoresis (DGGE). Water treatment significantly reduced active bacterial numbers detected by the BacLightTM kit and CFDA assay by 2·89 and 2·81 log respectively. Bacterial diversity was also reduced from >20 DGGE bands in the active fractions of reservoir water to only two bands in the active fractions of finished water. These two bands represented Stenotrophomonas maltophila, initially culturable by HPC, and a Burkholderia -related species. Both species maintained measurable traits of physiological activity in distribution system bulk water but were undetected by HPC. Conclusions:, Flow cytometric cell sorting with PCR-DGGE, to assess water treatment efficacy, identified active bacteria from a variety of major phylogenetic groups undetected by routine HPC. Following treatment S. maltophila and a Burkholderia -related species retained activity and entered distribution undetected by HPC. Significance and Impact of the Study:, Methods used here demonstrate how water treatment operators can better monitor water treatment plant efficacy and assess distribution system instability by the detection and identification of active bacteria recalcitrant to routine HPC culture. [source] Osteoclast Inhibitory Peptide 2 Inhibits Osteoclast Formation via Its C-Terminal FragmentJOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2001Sun Jin Choi Abstract Osteoclast inhibitory peptide 2 (OIP-2) is a novel autocrine/paracrine factor produced by osteoclasts (OCLs) that inhibits bone resorption and OCL formation in vitro and in vivo. It is identical to the asparaginyl endopeptidase legumain. During maturation of OIP-2, a signal peptide and a 17-kDa C-terminal fragment (CTF) are cleaved to produce the mature enzyme. To determine if enzyme activity is required for inhibition of OCL formation or if only the CTF is responsible for these effects, we synthesized His-tagged complementary DNA (cDNA) constructs for the CTF of OIP-2, the proform of OIP-2, and the "mature enzyme" form of OIP-2. The proform or the CTF portion of OIP-2 inhibited OCL formation in a dose-dependent manner in murine bone marrow cultures stimulated with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The mature form of OIP-2, which was enzymatically active, did not inhibit OCL formation. In addition, OIP-2 inhibited OCL formation in cultures of highly purified human OCL precursor cells or RAW264.7 cells stimulated with 10 ng/ml of receptor activator of NF-,B (RANK) ligand. Binding studies with His-tagged OIP-2 showed expression of a putative OIP-2 receptor on RAW264.7 cells treated with RANK ligand for 4 days and human marrow cultures treated with 1,25(OH)2D3 for 3 weeks. These data show that the CTF of OIP-2, rather than the mature enzyme, mediates the inhibitory effects of OIP-2 through a putative receptor on OCL precursors. [source] Two inducible, functional cyclooxygenase-2 genes are present in the rainbow trout genomeJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007Tomo-o Ishikawa Abstract The cyclooxygenases (Cox) catalyze the initial reactions in prostanoid biosynthesis, and produce the common prostanoids precursor, PGH2. Mammalian species have two Cox isoforms; constitutively expressed cyclooxygenase-1 (Cox-1) and inducible cyclooxygenase-2 (Cox-2). Database searches suggest three Cox genes are present in many fish species. In this study, we cloned and characterized a second Cox-2 cDNA, Cox-2b, from the rainbow trout. Rainbow trout Cox-2b protein contains all the functionally important conserved amino acids for Cox enzyme activity. Moreover, the Cox-2b message contains AU-rich elements (AREs) in the 3, untranslated region (3,UTR) characteristic of inducible Cox-2 mRNAs. We took advantage of the existence of a rainbow trout cell line to demonstrate that expression from both the originally reported Cox-2 (Cox-2a) and Cox-2b genes is inducible. However, differential induction responses to alternative inducers are observed for rainbow trout Cox-2a and Cox-2b. Both Cox-2a and Cox-2b proteins expressed in COS cells are enzymatically active. Thus the rainbow trout has two functional, inducible Cox-2 genes. The zebrafish also contains two Cox-2 genes. However, genome structure analysis suggests diversion of the Cox-2a gene between zebrafish and rainbow trout. J. Cell. Biochem. 102: 1486,1492, 2007. © 2007 Wiley-Liss, Inc. [source] Simultaneous inhibition of anti-coagulation and inflammation: crystal structure of phospholipase A2 complexed with indomethacin at 1.4,Å resolution reveals the presence of the new common ligand-binding siteJOURNAL OF MOLECULAR RECOGNITION, Issue 6 2009Nagendra Singh Abstract A novel ligand-binding site with functional implications has been identified in phospholipase A2 (PLA2). The binding of non-steroidal anti-inflammatory agent indomethacin at this site blocks both catalytic and anti-coagulant actions of PLA2. A group IIA PLA2 has been isolated from Daboia russelli pulchella (Russell's viper) which is enzymatically active as well as induces a strong anti-coagulant action. The binding studies have shown that indomethacin reduces the effects of both anti-coagulant and pro-inflammatory actions of PLA2. A group IIA PLA2 was co-crystallized with indomethacin and the structure of the complex has been determined at 1.4,Å resolution. The structure determination has revealed the presence of an indomethacin molecule in the structure of PLA2 at a site which is distinct from the conventional substrate-binding site. One of the carboxylic group oxygen atoms of indomethacin interacts with Asp 49 and His 48 through the catalytically important water molecule OW 18 while the second carboxylic oxygen atom forms an ionic interaction with the side chain of Lys 69. It is well known that the residues, His 48 and Asp 49 are essential for catalysis while Lys 69 is a part of the anti-coagulant loop (residues, 54,77). Indomethacin binds in such a manner that it blocks the access to both, it works as a dual inhibitor for catalytic and anti-coagulant actions of PLA2. This new binding site in PLA2 has been observed for the first time and indomethacin is the first compound that has been shown to bind at this novel site resulting in the prevention of anti-coagulation and inflammation. Copyright © 2009 John Wiley & Sons, Ltd. [source] Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor functionPROTEIN SCIENCE, Issue 5 2008Shira Albeck Abstract Antizyme inhibitor (AzI) regulates cellular polyamine homeostasis by binding to the polyamine-induced protein, Antizyme (Az), with greater affinity than ornithine decarboxylase (ODC). AzI is highly homologous to ODC but is not enzymatically active. In order to understand these specific characteristics of AzI and its differences from ODC, we determined the 3D structure of mouse AzI to 2.05 Å resolution. Both AzI and ODC crystallize as a dimer. However, fewer interactions at the dimer interface, a smaller buried surface area, and lack of symmetry of the interactions between residues from the two monomers in the AzI structure suggest that this dimeric structure is nonphysiological. In addition, the absence of residues and interactions required for pyridoxal 5,-phosphate (PLP) binding suggests that AzI does not bind PLP. Biochemical studies confirmed the lack of PLP binding and revealed that AzI exists as a monomer in solution while ODC is dimeric. Our findings that AzI exists as a monomer and is unable to bind PLP provide two independent explanations for its lack of enzymatic activity and suggest the basis for its enhanced affinity toward Az. [source] Structure of an N-terminally truncated Nudix hydrolase DR2204 from Deinococcus radioduransACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 11 2009A. M. D. Gonçalves Nudix pyrophosphatases are a well represented protein family in the Deinococcus radiodurans genome. These hydrolases, which are known to be enzymatically active towards nucleoside diphosphate derivatives, play a role in cleansing the cell pool of potentially deleterious damage products. Here, the structure of DR2204, the only ADP-ribose pyrophosphatase in the D. radiodurans genome that is known to be active towards flavin adenosine dinucleotide (FAD), is presented at 2.0,Å resolution. [source] Expression, purification and crystallization of an archaeal-type phosphoenolpyruvate carboxylaseACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 11 2009Lakshmi Dharmarajan An archaeal-type phosphoenolpyruvate carboxylase (PepcA) from Clostridium perfringens has been expressed in Escherichia coli in a soluble form with an amino-terminal His tag. The recombinant protein is enzymatically active and two crystal forms have been obtained. Complete diffraction data extending to 3.13,Å resolution have been measured from a crystal soaked in KAu(CN)2, using radiation at a wavelength just above the Au,LIII edge. The asymmetric unit contains two tetramers of PepcA. [source] High-level cell-free synthesis yields of proteins containing site-specific non-natural amino acidsBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009Aaron R. Goerke Abstract We describe an E. coli -based cell-free system for the production of proteins with a non-natural amino acid (nnAA) incorporated site-specifically (modified protein). The mutant Methanococcus jannaschii tyrosyl-tRNA synthetase (mTyrRS) and tRNATyr pair were used as orthogonal elements. The mTyrRS experienced proteolysis and modified protein yields improved with higher synthetase addition (200,300 µg/mL). Product yields were also improved by increasing levels of total protein to 20 mg protein/mL and available vesicle surface area to 0.5 m2/mL. This new E. coli -based cell-free procedure produced up to 400 µg/mL of eCAT109pAz, 660 µg/mL of eDHFR10pAz, and 210 µg/mL of mDHFR31pAz with p -azido- L -phenylalanine (pAz) incorporated site-specifically at the amber nonsense codon. O -methyl- L -tyrosine and p -acetyl- L -phenylalanine were incorporated by similar protocols. The desired specificity for incorporation of the nnAA by the cell-free system was confirmed. Additionally, the modified proteins were enzymatically active and reactive for copper(I)-catalyzed (3,+,2) cycloadditions (click chemistry). Biotechnol. Bioeng. 2009;102: 400,416. © 2008 Wiley Periodicals, Inc. [source] |