Enzymatic Degradation (enzymatic + degradation)

Distribution by Scientific Domains


Selected Abstracts


Enzymatic Degradation Protects Neurons from Glutamate Excitotoxicity

JOURNAL OF NEUROCHEMISTRY, Issue 3 2000
Christopher C. Matthews
Abstract: Several enzymes with the capacity to degrade glutamate have been suggested as possible neuroprotectants. We initially evaluated the kinetic properties of glutamate pyruvate transaminase (GPT; also known as alanine aminotransferase), glutamine synthetase, and glutamate dehydrogenase under physiologic conditions to degrade neurotoxic concentrations of glutamate. Although all three enzymes initially degraded glutamate rapidly, only GPT was able to reduce toxic (500 ,M) levels of glutamate into the physiologic (<20 ,M) range. Primary cultures of fetal murine cortical neurons were subjected to paradigms of either exogenous or endogenous glutamate toxicity to evaluate the neuroprotective value of GPT. Neuronal survival after exposure to added glutamate ranging from 100 to 500 ,M was improved significantly in the presence of GPT (,1 U/ml). Cultures were also exposed to the glutamate transporter inhibitor L- trans -pyrrolidine-2,4-dicarboxylate (PDC), which produces neuronal injury by elevating extracellular glutamate. GPT significantly reduced the toxicity of PDC. This reduction was associated with a reduction in the PDC-dependent rise in the medium concentration of glutamate. These results suggest that enzymatic degradation of glutamate by GPT can be an alternative to glutamate receptor blockade as a strategy to protect neurons from excitotoxic injury. [source]


The Influence of Pendant Hydroxyl Groups on Enzymatic Degradation and Drug Delivery of Amphiphilic Poly[glycidol- block -(, -caprolactone)] Copolymers

MACROMOLECULAR BIOSCIENCE, Issue 11 2009
Jing Mao
Abstract An amphiphilic diblock copolymer PG- b -PCL with well-controlled structure and pendant hydroxyl groups along hydrophilic block was synthesized by sequential anionic ring-opening polymerization. The micellization and drug release of PG- b -PCL copolymers using pyrene as a fluorescence probe were investigated for determining the influences of copolymer composition and lipase concentration on drug loading capacity and controlled release behavior. The biodegradation of PG- b -PCL copolymers was studied with microspheres as research samples. It has been concluded that the polar hydroxyl groups along each repeat unit of hydrophilic PG block in PG- b -PCL copolymer have great influences on drug encapsulation, drug release, and enzymatic degradation of micelles and microspheres. [source]


Enzymatic Degradation of Biodegradable Polyester Composites of Poly(L -lactic acid) and Poly(, -caprolactone)

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 10 2006
Hideto Tsuji
Abstract Summary: Two different types of biodegradable polyester composites, PLLA fiber-reinforced PCL and PCL/PLLA blend films were prepared at PCL/PLLA ratio of 88/12 (w/w), together with pure PCL and PLLA films. Their enzymatic degradation was investigated by the use of Rhizopus arrhizus lipase and proteinase K as degradation enzymes for PCL and PLLA chains, respectively. In the FRP film, the presence of PLLA fibers accelerated the lipase-catalyzed enzymatic degradation of PCL matrix compared with that in the pure PCL film, whereas in the blend film, the presence of PLLA chains dissolved in the continuous PCL-rich domain retarded the lipase-catalyzed enzymatic degradation of PCL chains. In contrast, in the FRP film, the proteinase K-catalyzed enzymatic degradation of PLLA fibers was disturbed compared with that of the pure PLLA film, whereas in the blend film, the proteinase K-catalyzed enzymatic degradation rate of particulate PLLA-rich domains was higher than that of pure PLLA film. The reasons for aforementioned enhanced and disturbed enzymatic degradation are discussed. Normalized PCL weight loss of pure PCL, FRP, and blend films as a function of Rhizopus arrhizus lipase-catalyzed enzymatic degradation time. [source]


Study on the Kinetics for Enzymatic Degradation of a Natural Polysaccharide, Konjac Glucomannan

MACROMOLECULAR SYMPOSIA, Issue 1 2004
Guangji Li
Abstract The enzymatic degradation of konjac glucomannan (KGM) was conducted using ,-mannanase from an alkalophilic Bacillus sp. in the aqueous medium (pH 9.0) at 30°C. The intrinsic viscosity ([,]), molecular weight (Mw) and molecular weight distribution (MWD) of the degraded KGM were measured. The mathematical relation between [,] and Mw, [,] = 5.06 × 10,4Mw0.754, was established. The kinetic analysis reveals a dependence of the rate constant (k) on the period of reaction and the initial substrate concentration (c0) over the range of substrate concentration (1.0,2.0%) used in this work. The results indicate that the enzymatic degradation of KGM is a complex reaction combining two reaction processes with different orders. In the initial phase of degradation k is inversely proportional to c0, which is characteristic of a zeroth-order reaction; while in the following phase k is independent of c0, implying the degradation follows a first-order reaction. The reactivity difference in breakable linkages of KGM, the action mechanism of an enzyme on KGM macromolecules, and the theory concerning the formation of an enzyme-substrate complex and ,substrate saturation' can be used to explain such a kinetic behavior. In addition, the enzymatic degradation of KGM was also carried out using the other enzymes like ,-mannanase from a Norcardioform actinomycetes, ,-glucanase Finizym and a compound enzyme Hemicell as a biocatalyst. By comparing and analyzing the degradation processes of KGM catalyzed by four different enzymes, it can be observed that there is a two-stage reaction with two distinct kinetic regimes over a certain range of degradation time for each of the degradation processes. These results are useful to realize controllable degradation of polysaccharides via an environmental benign process. [source]


Cyclen-Based Side-Chain Homopolymer Self-Assembly with Plasmid DNA: Protection of DNA from Enzymatic Degradation

CHEMISTRY & BIODIVERSITY, Issue 5 2009
Kun Li
Abstract In this study, a 1,4,7,10-tetraazacyclododecane (cyclen)-based side-chain homopolymer was developed for the first time; this polymer can self-assembly with plasmid DNA to form polyelectrolyte complexes (polyplex), which can protect DNA from enzymatic degradation. Moreover, the polyplex can disassembly and release free DNA when NaCl solution is added to this system. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used for imaging of the surface structure of the polyplex, and results indicated that the polyplex structures respond to the polymer concentration. Circular dichroism (CD) spectrum suggested that the DNA configuration in the polyplex was retained. [source]


Enzymatic degradation of poly(L -lactic acid) fibers: Effects of small drawing

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007
Hideto Tsuji
Abstract The enzymatic degradation of poly(L -lactic acid) (PLLA) fibers with different low draw ratios (1.0, 1.2, and 1.4 times) was investigated in tris-HCl buffer solution (pH = 8.6) with proteinase K by the use of gravimetry, scanning electron microscopy (SEM), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and tensile testing. Surprisingly, even the small drawings (1.2 and 1.4 times) disturbed the proteinase K catalyzed enzymatic degradation of the PLLA fibers. This should have been because the enzyme could not attach to the extended (strained) chains in the amorphous regions of the uniaxially oriented PLLA fibers or could not catalyze the cleavage of the strained chains. The accumulation of crystalline residues formed as a result of selective cleavage, and removal of the amorphous chains was not observed, even for as-spun PLLA fibers. This indicated the facile release of formed crystalline residues from the surface of the as-spun PLLA fibers during enzymatic degradation. Such release may have been because the crystalline regions of the as-spun PLLA fibers were oriented with their c axis parallel to the machine direction, as reported for biaxially oriented PLLA films. Gravimetry, SEM, and tensile testing could trace the enzymatic degradation of the PLLA fibers, although the enzymatic degradation of the PLLA fibers was untraceable by GPC and DSC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2064,2071, 2007 [source]


Study on Enzymatic Hydrolysis of Polylactic Acid by Endogenous Depolymerizaion Model

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 6 2007
Masaji Watanabe
Abstract Enzymatic degradation of polylactic acid is studied experimentally and analytically. Gel permeation chromatography profiles obtained before and after the enzymatic degradation of polylactic acid (PLA) were introduced into the analysis based on a mathematical model. Previously developed techniques were successfully adapted to the analysis of an initial value problem consisting of an endogenous depolymerization model and an initial condition, and an inverse problem to determine the degradation rate for which the solution of the initial value problem also satisfies a final condition. Those problems were solved numerically and numerical results are introduced. Degradabilities of PLA and polyvinyl alcohol are compared. [source]


Kinetic analysis of hyaluronidase activity using a bioactive MRI contrast agent

CONTRAST MEDIA & MOLECULAR IMAGING, Issue 3 2006
Liora Shiftan
Abstract One of the attractions of molecular imaging using ,smart' bioactive contrast agents is the ability to provide non-invasive data on the spatial and temporal changes in the distribution and expression patterns of specific enzymes. The tools developed for that aim could potentially also be developed for functional imaging of enzyme activity itself, through quantitative analysis of the rapid dynamics of enzymatic conversion of these contrast agents. High molecular weight hyaluronan, the natural substrate of hyaluronidase, is a major antiangiogenic constituent of the extracellular matrix. Degradation by hyaluronidase yields low molecular weight fragments, which are proangiogenic. A novel contrast material, HA-GdDTPA-beads, was designed to provide a substrate analog of hyaluronidase in which relaxivity changes are induced by enzymatic degradation. We show here a first-order kinetic analysis of the time-dependent increase in R2 as a result of hyaluronidase activity. The changes in R2 and the measured relaxivity of intact HA-GdDTPA-beads (r2B) and HA-GdDTPA fragments (r2D) were utilized for derivation of the temporal drop in concentration of GdDTPA in HA-GdDTPA-beads as the consequence of the release of HA-GdDTPA fragments. The rate of dissociation of HA-GdDTPA from the beads showed typical bell-shaped temperature dependence between 7 and 36 °C with peak activity at 25 °C. The tools developed here for quantitative dynamic analysis of hyaluronidase activity by MRI would allow the use of activation of HA-GdDTPA-beads for the determination of the role of hyaluronidase in altering the angiogenic microenvironment of tumor micro metastases. Copyright © 2006 John Wiley & Sons, Ltd. [source]


In Vitro Resistance to Degradation of Hyaluronic Acid Dermal Fillers by Ovine Testicular Hyaluronidase

DERMATOLOGIC SURGERY, Issue 2010
DEREK JONES MD
BACKGROUND Although adverse events are uncommon with hyaluronic acid (HA) fillers, the use of hyaluronidase permits the reversal of treatment complications or overcorrection. OBJECTIVE This study sought to determine an in vitro dose-response relationship between ovine testicular hyaluronidase (OTH) and three HA dermal fillers (24-mg/mL smooth gel, 20-mg/mL particulate gel, and 5.5-mg/mL particulate gel with 0.3% lidocaine). METHODS AND MATERIALS The dose response of each was measured after incubation for 30 minutes in concentrations ranging between 5 and 40 U of OTH. Timed responses for the 24-mg/mL and 20-mg/mL HA fillers were obtained after incubation with 20 U of OTH for 15 to 120 minutes. RESULTS After all dose responses and timed-interval tests, the 24-mg/mL HA smooth gel filler exhibited more resistance against in vitro enzymatic degradation to OTH than the 20- and 5.5-mg/mL HA particulate gels. CONCLUSION This resistance to degradation in vitro may be attributed to the higher HA content of the 24-mg/mL HA smooth gel, the degree of crosslinking, and the cohesive property of the gel filler. This study was funded by a grant from Allergan, Inc., Santa Barbara, CA. Derek Jones, MD, is a consultant, investigator, advisory board member, and speaker for Allergan, Inc. He received no compensation for this study. Drs. Tezel and Borrell are employed by Allergan, Inc., Santa Barbara, CA. Editorial assistance was provided by Health Learning Systems, a part of CommonHealth, Parsippany, NJ. [source]


Structure and function studies of glucagon-like peptide-1 (GLP-1): the designing of a novel pharmacological agent for the treatment of diabetes

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 4 2005
Hongxiang Hui
Abstract Glucagon-like peptide-1 (GLP-1) is a proglucagon-derived peptide secreted from gut endocrine cells in response to nutrient ingestion. The multifaceted actions of GLP-1 include the following: (1) the stimulation of insulin secretion and of its gene expression, (2) the inhibition of glucagon secretion, (3) the inhibition of food intake, (4) the proliferation and differentiation of beta cells, and (5) the protection of beta-cells from apoptosis. The therapeutic utility of the native GLP-1 molecule is limited by its rapid enzymatic degradation by a serine protease termed dipeptidyl peptidase-IV (DPP-IV). The present article reviews the research studies aimed at elucidating the biosynthesis, metabolism, and molecular characteristics of GLP-1 since it is from these studies that the development of a GLP-1-like pharmacological agent may be derived. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Dynamics of P2X7 receptor pore dilation: Pharmacological and functional consequences

DRUG DEVELOPMENT RESEARCH, Issue 2-3 2001
I.P. Chessell
Abstract The biophysical and functional properties of the human P2X7 receptor, expressed recombinantly in HEK-293 cells or natively in THP-1 pro-monocytic cells, were investigated in the context of pore dilation and externalisation of mature interleukin 1, (IL1,). In HEK-293 cells, the agonist 2,- and 3,-O-(4-benzoylbenzoyl)-ATP (BzATP) caused concentration-dependent inward currents (EC50 59 ,M) and with prolonged application this agonist caused a gradual increase in inward current culminating in a plateau. This increase in current was associated with pore dilation, determined by intracellular accumulation of YO-PRO-1. BzATP displayed increased potency at the pore-dilated form of the P2X7 receptor (EC50 17 ,M), and positive correlations between apparent receptor density and speed of pore dilation were observed. A monoclonal antibody selectively blocked current mediated by the naïve receptor, while currents through pore-dilated receptors were not significantly affected, which together suggest a conformational change at the level of the receptor during the dilation event. The release of mature IL1, from THP-1 cells was independent of P2X7 -mediated cell lysis, as determined by study of lactate dehydrogenase release. Moreover, using conditions designed to minimise pore dilation (using buffers containing 2 mM Ca2+ and 1 mM Mg2+), BzATP caused significant release of IL1,, but without concomitant YO-PRO-1 accumulation, indicating pore dilation is not required for IL1, release. In addition, short (4-min) incubation of THP-1 cells with BzATP (terminated by enzymatic degradation of BzATP using apyrase) resulted in significant quantities of IL1, release some 60 min later, suggesting commitment of cells to release IL1, can be triggered with only brief receptor ligation. These findings suggest that receptor expression and ligation time are critical factors for selecting multiple functional states of P2X7. Drug Dev. Res. 53:60,65, 2001. © 2001 Wiley-Liss, Inc. [source]


A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice,

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2004
Asya Rolls
Abstract Chondroitin sulphate proteoglycan (CSPG) inhibits axonal regeneration in the central nervous system (CNS) and its local degradation promotes repair. We postulated that the enzymatic degradation of CSPG generates reparative products. Here we show that an enzymatic degradation product of CSPG, a specific disaccharide (CSPG-DS), promoted CNS recovery by modulating both neuronal and microglial behaviour. In neurons, acting via a mechanism that involves the PKC, and PYK2 intracellular signalling pathways, CSPG-DS induced neurite outgrowth and protected against neuronal toxicity and axonal collapse in vitro. In microglia, via a mechanism that involves ERK1/2 and PYK2, CSPG-DS evoked a response that allowed these cells to manifest a neuroprotective phenotype ex vivo. In vivo, systemically or locally injected CSPG-DS protected neurons in mice subjected to glutamate or aggregated ,-amyloid intoxication. Our results suggest that treatment with CSPG-DS might provide a way to promote post-traumatic recovery, via multiple cellular targets. [source]


Functionalization of Chitosan via Atom Transfer Radical Polymerization for Gene Delivery

ADVANCED FUNCTIONAL MATERIALS, Issue 18 2010
Yuan Ping
Abstract It is of crucial importance to modify chitosan-based polysaccharides in the designing of biomedical materials. In this work, atom transfer radical poly­merization (ATRP) was employed to functionalize chitosan in a well-controlled manner. A series of new degradable cationic polymers (termed as PDCS) composed of biocompatible chitosan backbones and poly((2-dimethyl amino)ethyl methacrylate) (P(DMAEMA)) side chains of different length were designed as highly efficient gene vectors via ATRP. These vectors, termed as PDCS, exhibited good ability to condense plasmid DNA (pDNA) into nanoparticles with positive charge at nitrogen/phosphorus (N/P) ratios of 4 or higher. All PDCS vectors could well protect the condensed DNA from enzymatic degradation by DNase I and they displayed high level of transfectivity in both COS7, HEK293 and HepG2 cell lines. Most importantly, in comparison with high-molecular-weight P(DMAEMA) and ,gold-standard' PEI (25 kDa), the PDCS vectors showed considerable buffering capacity in the pH range of 7.4 to 5, and were capable of mediating much more efficient gene transfection at low N/P ratios. At their own optimal N/P ratios for trasnsfection, the PDCS/pDNA complexes showed much lower cytotoxicity. All the PDCS vectors were readily to be degradable in the presence of lysozyme at physiological conditions in vitro. These well-defined PDCS polymers have great potentials as efficient gene vectors in future gene therapy. [source]


Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products

FEMS MICROBIOLOGY REVIEWS, Issue 3 2005
Gerrit Smit
Abstract Flavour development in dairy fermentations, most notably cheeses, results from a series of (bio)chemical processes in which the starter cultures provide the enzymes. Particularly the enzymatic degradation of proteins (caseins) leads to the formation of key-flavour components, which contribute to the sensory perception of dairy products. More specifically, caseins are degraded into peptides and amino acids and the latter are major precursors for volatile aroma compounds. In particular, the conversion of methionine, the aromatic and the branched-chain amino acids are crucial. A lot of research has focused on the degradation of caseins into peptides and free amino acids, and more recently, enzymes involved in the conversion of amino acids were identified. Most data are generated on Lactococcus lactis, which is the predominant organism in starter cultures used for cheese-making, but also Lactobacillus, Streptococcus, Propionibacterium and species used for surface ripening of cheeses are characterised in their flavour-forming capacity. In this paper, various enzymes and pathways involved in flavour formation will be highlighted and the impact of these findings for the development of industrial starter cultures will be discussed. [source]


Antioxidant Activity of Degradable Polymer Poly(trolox ester) to Suppress Oxidative Stress Injury in the Cells

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2010
Paritosh P. Wattamwar
Abstract Oxidative stress is a pathological condition that has been implicated as a central player in a variety of diseases, including vascular and neurodegenerative diseases. More recently, oxidative stress has also been shown to be involved in the biological incompatibility of many materials, especially at the nanoscale. As such, there is a critical need for new biomaterials that can inhibit this response, improving the compatibility of medical devices. In this work, trolox, a synthetic antioxidant and water-soluble analogue of Vitamin E, is polymerized to form an oxidation active polymer as a new class of biomaterial. Synthesized poly(trolox ester) polymers were formulated into nanoparticles using a single emulsion technique, and their size was controlled by changing the polymer concentration in the organic solvent. Nanoparticle cytotoxicity, protective effects against cellular oxidative stress, and degradation kinetics were all evaluated. Poly(trolox ester) nanoparticles were found to have little to no cytotoxicity and were capable of suppressing cellular oxidative stress induced by cobalt nanoparticles. In vitro degradation studies of poly(trolox ester) nanoparticles indicate that the antioxidant activity of nanoparticles was derived from its enzymatic degradation to release active antioxidants. [source]


Controlled Degradability of Polysaccharide Multilayer Films In Vitro and In Vivo,

ADVANCED FUNCTIONAL MATERIALS, Issue 11 2005
C. Picart
Abstract This article demonstrates the possibility of tuning the degradability of polysaccharide multilayer films in vitro and in vivo. Chitosan and hyaluronan multilayer films (CHI/HA) were either native or crosslinked using a water soluble carbodiimide, 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide (EDC) at various concentrations in combination with N-hydroxysulfosuccinimide. The in-vitro degradation of the films in contact with lysozyme and hyaluronidase was followed by quartz crystal microbalance measurements, fluorimetry, and confocal laser scanning microscopy after labeling of the chitosan with fluorescein isothiocyanate (CHIFITC). The native films were subjected to degradation by these enzymes, and the crosslinked films were more resistant to enzymatic degradation. Films made of chitosan of medium molecular weight were more resistant than films made of chitosan-oligosaccharides. The films were also brought in contact with plasma, which induced a change in film structure for the native film but did not have any effect on the crosslinked film. The in-vitro study shows that macrophages can degrade all types of films and internalize the chitosan. The in-vivo degradation of the films implanted in mouse peritoneal cavity for a week again showed an almost complete degradation of the native films, whereas the crosslinked films were only partially degraded. Taken together, these results suggest that polysaccharide multilayer films are of potential interest for in-vivo applications as biodegradable coatings, and that degradation can be tuned by using chitosan of different molecular weights and by controlling film crosslinking. [source]


Hyaluronan oligosaccharides sensitize lymphoma resistant cell lines to vincristine by modulating P-glycoprotein activity and PI3K/Akt pathway

INTERNATIONAL JOURNAL OF CANCER, Issue 5 2008
Rosalía I. Cordo Russo
Abstract Multidrug resistance (MDR) is one of the main reasons for failure of cancer therapy. It may be mediated by overexpression of ATP-dependent efflux pumps or by alterations in survival or apoptotic pathways. Fragments generated by enzymatic degradation of hyaluronan (oHA) were able to modulate growth and cell survival and sensitize MDR breast cancer cells to cytotoxic drugs. In this work the relationship between oHA and MDR in lymphoid malignancies was analyzed using murine lymphoma cell lines resistant to doxorubicin (LBR-D160) or vincristine (LBR-V160) and a sensitive line (LBR-). After oHA treatment, higher apoptosis levels were observed in the resistant cell lines than in the sensitive one. Besides, oHA sensitized LBR-D160 and LBR-V160 to vincristine showing increased apoptosis induction when used in combination with vincristine. Native hyaluronan failed to increase apoptosis levels. As different survival factors could be modulated by hyaluronan, we investigated the PI3K/Akt pathway through PIP3 production and phosphorylated Akt (p-Akt) and survivin expression was also evaluated. Our results showed that oHA decreased p-Akt in the 3 cell lines while anti-CD44 treatment abolished this effect. Besides, survivin was downregulated only in LBR-V160 by oHA. When Pgp function was evaluated, we observed that oHA were able to inhibit Pgp efflux in murine and human resistant cell lines in a CD44-dependent way. In summary, we report for the first time that oHA per se modulate MDR in lymphoma cells by decreasing p-Akt as well as Pgp activity, thus suggesting that oHA could be useful in combination with classical chemotherapy in MDR hematological malignancies. © 2007 Wiley-Liss, Inc. [source]


Enzymatic degradation of poly(L -lactic acid) fibers: Effects of small drawing

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007
Hideto Tsuji
Abstract The enzymatic degradation of poly(L -lactic acid) (PLLA) fibers with different low draw ratios (1.0, 1.2, and 1.4 times) was investigated in tris-HCl buffer solution (pH = 8.6) with proteinase K by the use of gravimetry, scanning electron microscopy (SEM), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and tensile testing. Surprisingly, even the small drawings (1.2 and 1.4 times) disturbed the proteinase K catalyzed enzymatic degradation of the PLLA fibers. This should have been because the enzyme could not attach to the extended (strained) chains in the amorphous regions of the uniaxially oriented PLLA fibers or could not catalyze the cleavage of the strained chains. The accumulation of crystalline residues formed as a result of selective cleavage, and removal of the amorphous chains was not observed, even for as-spun PLLA fibers. This indicated the facile release of formed crystalline residues from the surface of the as-spun PLLA fibers during enzymatic degradation. Such release may have been because the crystalline regions of the as-spun PLLA fibers were oriented with their c axis parallel to the machine direction, as reported for biaxially oriented PLLA films. Gravimetry, SEM, and tensile testing could trace the enzymatic degradation of the PLLA fibers, although the enzymatic degradation of the PLLA fibers was untraceable by GPC and DSC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2064,2071, 2007 [source]


Effects of chitosan solution concentration and incorporation of chitin and glycerol on dense chitosan membrane properties

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2007
Paula Rulf Marreco Dallan
Abstract The aim of this work was to perform a systematic study about the effects induced by chitosan solution concentration and by chitin or glycerol incorporation on dense chitosan membranes with potential use as burn dressings. The membrane properties analyzed were total raw material cost, thickness, morphology, swelling ratio, tensile strength, percentage of strain at break, crystallinity, in vitro enzymatic degradation with lysozyme, and in vitro Vero cells adhesion. While the use of the most concentrated chitosan solution (2.5% w/w) increased membrane cost, it also improved the biomaterial mechanical resistance and ductility, as well as reduced membrane degradation when exposed for 2 months to lysozyme. The remaining evaluated properties were not affected by initial chitosan solution concentration. Chitin incorporation, on the other hand, reduced the membranes cost, swelling ratio, mechanical properties, and crystallinity, resulting in thicker biomaterials with irregular surface more easily degradable when exposed to lysozyme. Glycerol incorporation also reduced the membranes cost and crystallinity and increased membranes degradability after exposure to lysozyme. Strong Vero cells adhesion was not observed in any of the tested membrane formulations. The overall results indicate that the majority of the prepared membranes meet the performance requirements of temporary nonbiodegradable burn dressings (e.g. adequate values of mechanical resistance and ductility, low values of in vitro cellular adhesion on their surfaces, low extent of degradation when exposed to lysozyme solution, and high stability in aqueous solutions). © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2007 [source]


Bone-specific heparan sulfates induce osteoblast growth arrest and downregulation of retinoblastoma protein

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2006
Kerry J. Manton
The heparan sulfate (HSs) sugars of the extracellular matrix (ECM) play a key role during both development and wound repair in regulating the flow of growth and adhesive factors across their cell surface receptors. The aim of this study was to assess the structural and functional differences of HS chains extracted from the conditioned media (soluble), cell surface, and ECM of primary human osteoblast cultures, and to analyze their effects on osteoblast cell growth. HS chains from these compartments were characterized through a combination of enzymatic degradation, anion exchange chromatography, and molecular sieving. Although the chains were all approximately the same size, they varied systematically in their sulfate content, suggesting differences in their protein-binding domains. When added to pre-confluent hFOB1.19 osteoblast cultures, HS doses exceeding 500 ng/ml inhibited proliferation, without affecting viability, irrespective of their origin. Furthermore, HS doses of 500 ng/ml also downregulated retinoblastoma, Cyclin A and CDK1 protein expression, indicating that high doses of osteoblast HS negatively regulate cell cycle, resulting in growth arrest; when high doses of HS were withdrawn after a prolonged period, linear cell growth was reestablished. Thus, despite differences in sulfation, HS from either the soluble, cell surface, or matrix compartments of primary human osteoblast cultures are functionally similar with respect to their effects on growth. Binding assays revealed that the HS chains bound TGF,1, a known inhibitor of osteoprogenitor growth, at higher affinity than a suite of other bone-related, heparin-binding growth factors. Overcoming such sugar-mediated inhibition may prove important for wound repair. J. Cell. Physiol. 209: 219,229, 2006. © 2006 Wiley-Liss, Inc. [source]


Conformational analysis of thiopeptides: derivation of sp2 sulfur parameters for the CFF91 force field

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 10 2001
Tran Trung Tran
Abstract When a sulfur atom is used to substitute for the oxygen in peptide bonds, its bulkiness should restrict the conformational space available to an amino acid. This conformational restriction as well as the ability to confer resistance to enzymatic degradation in the body means that thio-substituted amino acids are potentially useful building blocks for drug design. To simulate the effects of thio substitution, force field parameters for sp2 sulfur are required. In this article, parameters for the thioamide group have been derived for the molecular mechanics CFF91 force field (available at http://www.ludwig.edu.au/archive/tran). The bond increment charges were obtained by fitting to ab initio charges and dipoles. The van der Waals parameters were obtained by fitting to high-resolution crystallographic data, and the nonbonded parameters were verified by comparing with experimentally derived lattice energy. The bonded parameters were derived by least-square fits to the ab initio calculated energy surfaces, i.e., conformational energy as well as their first and second derivatives of seven model thioamide molecules. When the sp2 sulfur parameters were tested on a set of seven X-ray crystallographic structures from the Cambridge Structural Database, they satisfactorily reproduced the bond lengths, bond angles, torsional angles, and nonbonded distances of all the crystal structures. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1010,1025, 2001 [source]


Enzymatic Degradation Protects Neurons from Glutamate Excitotoxicity

JOURNAL OF NEUROCHEMISTRY, Issue 3 2000
Christopher C. Matthews
Abstract: Several enzymes with the capacity to degrade glutamate have been suggested as possible neuroprotectants. We initially evaluated the kinetic properties of glutamate pyruvate transaminase (GPT; also known as alanine aminotransferase), glutamine synthetase, and glutamate dehydrogenase under physiologic conditions to degrade neurotoxic concentrations of glutamate. Although all three enzymes initially degraded glutamate rapidly, only GPT was able to reduce toxic (500 ,M) levels of glutamate into the physiologic (<20 ,M) range. Primary cultures of fetal murine cortical neurons were subjected to paradigms of either exogenous or endogenous glutamate toxicity to evaluate the neuroprotective value of GPT. Neuronal survival after exposure to added glutamate ranging from 100 to 500 ,M was improved significantly in the presence of GPT (,1 U/ml). Cultures were also exposed to the glutamate transporter inhibitor L- trans -pyrrolidine-2,4-dicarboxylate (PDC), which produces neuronal injury by elevating extracellular glutamate. GPT significantly reduced the toxicity of PDC. This reduction was associated with a reduction in the PDC-dependent rise in the medium concentration of glutamate. These results suggest that enzymatic degradation of glutamate by GPT can be an alternative to glutamate receptor blockade as a strategy to protect neurons from excitotoxic injury. [source]


Synthesis, characterization and hybridization studies of new nucleo-,-peptides based on diaminobutyric acid

JOURNAL OF PEPTIDE SCIENCE, Issue 12 2006
G. N. Roviello
Abstract In the present work, we report the synthesis and the characterization of a new chiral nucleoaminoacid, in which a diaminobutyric moiety is connected to the DNA nucleobase by an amidic bond, and its oligomerization to give the corresponding nucleo-,-peptide. The ability of this synthetic polymer to bind complementary DNA was studied in order to explore its possible use in antigene/antisense or diagnostic applications. Our interest in the presented DNA analogue was also supported by the importance of ,-aminoacid-containing compounds in natural products of biological activity and by the known stability of ,-peptides to enzymatic degradation. Furthermore, our work could contribute to the study of the role of nucleopeptides as prebiotic material in a PNA world that could successively lead to the actual DNA/RNA/protein world, as recently assumed. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd. [source]


New potent hGH-RH analogues with increased resistance to enzymatic degradation

JOURNAL OF PEPTIDE SCIENCE, Issue 7 2002
Professor Jan Izdebski
Abstract Four hGH-RH analogues containing homoarginine (Har) and/or D -Arg were obtained by solid-phase methodology using Boc-chemistry. To introduce Har residues, a Lys(Fmoc) protected Lys derivative was incorporated in the appropriate positions (11, 12, 20, 21 or 29); after assembly of the peptide chain the Fmoc group was removed and the peptide-resin was guanidinylated by treatment with N, N,-bis(tert -butoxycarbonyl)- S -methylisothiourea. The peptides were cleaved from the resin by treatment with liquid HF, and the products were purified by RP-HPLC. The peptides were subjected to digestion by trypsin, and the course of the reaction was followed by HPLC and ESI-MS. It was found that peptide bonds formed by the carboxyl group of Har are completely stable to trypsin. The course of cleavage at Lys or Arg residues depends on the position of Har in the sequence. All the analogues investigated stimulate the release of GH in rats after subcutaneous administration, and were about 50,100 times as potent as rGH-RH itself. The analogues had no effect on PRL, LH and FSH levels. Copyright © 2002 European Peptide Society and John Wiley & Sons, Ltd. [source]


Evaluation of buccal methyl-,-cyclodextrin toxicity on human oral epithelial cell culture model

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 6 2005
Laïla Boulmedarat
Abstract Cyclodextrins, especially methylated ,-cyclodextrins offer several advantages for drug delivery which include improved drug solubilization, protection against physicochemical and enzymatic degradation, as well as a potential for absorption improvement. However, little or no data are available for their use as drug penetration enhancer via the buccal route. This study focuses on the toxicity of randomly methylated ,-cyclodextrin (RAMEB) on buccal mucosa using a reconstituted human oral epithelium model composed of TR 146 cells. Toxicity of RAMEB on TR 146 cells was evaluated by measuring cell viability (MTT assay) and membrane damages followed by LDH release after single and repeated exposures to RAMEB solutions. Inflammatory effects of RAMEB are also considered by measuring expression of interleukin-1, and are supported by histological examination. The present results indicate that 10% RAMEB results in cytotoxic and inflammatory effects depending on time exposure, whereas 2% and 5% RAMEB do not induce tissue damages even after 5 days of repeated exposures. Therefore, the highly water-soluble RAMEB is thought to be a safe candidate as an excipient for buccal mucosal drug delivery. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:1300,1309, 2005 [source]


Insulin aggregation and asymmetric transport across human bronchial epithelial cell monolayers (Calu-3)

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2002
Isabelle Pezron
Abstract The purpose of this work was to elucidate the transport pathways of zinc insulin across the Calu-3 cell monolayer, an in vitro model of the human airway epithelium. Calu-3 cells grown in liquid-covered conditions formed a confluent monolayer with a high transepithelial electrical resistance value of 1000,±,150 ,,·,cm2. The cell monolayer was characterized by a low mannitol permeability of 4.7,±,0.5 10,7cm/s. Transport of zinc insulin (donor concentration 1 U/mL) in Dulbecco's modified phosphate buffer saline at 37°C was found to be higher in the basolateral (BL) to apical (AP) (Papp,=,3.0,±,0.2 10,8 cm/s), than in the AP to BL direction (Papp,=,0.41,±,0.02 10,8 cm/s). P-glycoprotein efflux or specific enzymatic degradation did not appear to contribute toward this asymmetric transport. Insulin receptors, though apparently more abundant on the BL side than on the AP side of Calu-3 cells, did not mediate the direction-dependent transport of insulin. However, transport of a monomeric human insulin analog, Asp(B10)des(B28-30), across the Calu-3 cell monolayer was similar in both directions (BL to AP and AP to BL). The corresponding permeability, Papp,=,2.9,±,0.2 10,8 cm/s, was not significantly different from the permeability of zinc insulin in the BL to AP direction. The paracellular pathway seems to play a major role in the insulin transport across the Calu-3 cell monolayers. We hypothesize that the transport of zinc insulin oligomers is restricted at the AP surface by the presence of the tight junctional complexes. From the BL side, oligomers may undergo dissociation in the intercellular space and diffuse readily as monomers to the AP surface of the membrane. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:1135,1146, 2002 [source]


Thiolation of polycarbophil enhances its inhibition of intestinal brush border membrane bound aminopeptidase N

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2001
Andreas Bernkop-Schnürch
Abstract The purpose of this study was to evaluate the potential of polycarbophil,cysteine conjugates (PCP,Cys) as an oral excipient to protect leucine enkephalin (leu-enkp) from enzymatic degradation by the intestinal mucosa. Cysteine was covalently linked to polycarbophil by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC). Inhibitory activity was tested towards isolated aminopeptidase N and excised intact pig intestinal mucosa, with native mucus. Aminopeptidase N activity was assayed spectrophotometrically using L -leucine p -nitroanilide (leu-pNA) as a synthetic substrate and against the model peptide drug leu-enkp, by high-performance liquid chromatography (HPLC). Free cysteine at 6.3 and 63 ,M (pH 6) significantly (p,<,0.05) inhibited aminopeptidase N activity, and PCP,Cys (0.25% w/v, pH 6) had a significantly (p,<,0.05) greater inhibitory effect than PCP on the aminopeptidase N activity towards both substrates. PCP,Cys completely protected leu-enkp against aminopeptidase N activity over a 2-h incubation period, whereas 83,±,4 and 60,±,7% remained stable in the presence of PCP and buffer only, respectively. Leu-enkp in the absence and presence of PCP (0.25% w/v) at pH 6 was completely digested by the intact intestinal mucosa at the 60- and 90-min incubation time points, respectively, whereas in the presence of PCP,Cys (0.25% w/v, pH 6) 11,±,3.5% of leu-enkp remained at the 120-min time point. Thiolation of PCP increased the stability of leu-enkp against the enzymatic degradation by aminopeptidase N and the intact intestinal mucosa, identifying a promising new excipient for peroral delivery of peptides. © 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1907,1914, 2001 [source]


Poly(L-lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I: physicochemical and stability studies

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2002
Montakarn Chittchang
Low oral bioavailability of therapeutic peptides and proteins generally results from their poor permeability through biological membranes and enzymatic degradation in the gastrointestinal tract. Since different secondary structures exhibit different physicochemical properties such as hydrophobicity, size and shape, changing the secondary structure of a therapeutic polypeptide may be another approach to increasing its membrane permeation. Poly(L-lysine) was used as a model polypeptide. The objectives of this study were to induce secondary structural changes in poly(L-lysine) and to determine the time course over which a given conformer was retained. In addition, the hydrophobicity of each secondary structure of poly(L-lysine) was assessed. The circular dichroism (CD) studies demonstrated that the conditions employed could successfully induce the desired secondary structural changes in poly(L-lysine). The ,-helix conformer appeared to be more stable at 25° C whereas the ,-sheet conformer could be preserved at 37° C. On the other hand, the random coil conformer was retained at both temperatures. Significant losses of the ,-helix and the ,-sheet conformers were observed when the pH was reduced. The change in ionic strength did not affect any of the conformers. The octanol/buffer partitioning studies indicated that the ,-helix and the ,-sheet conformers exhibited significantly different (P< 0.05) hydrophobicities. In conclusion, variation of pH and temperature conditions can be used to induce secondary structural changes in poly(L-lysine). These changes are reversible when the stimuli are removed. The ,-helix and the ,-sheet conformers of poly(L-lysine) are more lipophilic than the native random coil conformer. Thus, poly(L-lysine) may represent an ideal model polypeptide with which to further investigate the effects of secondary structure on membrane diffusion or permeation. [source]


Improvement of Subcutaneous Bioavailability of Insulin by Sulphobutyl Ether ,-Cyclodextrin in Rats

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2000
KEIICHI TOKIHIRO
The objective of this study was to examine and compare how hydrophilic ,-cyclodextrin derivatives (,-CyDs) improve the bioavailability of insulin following subcutaneous injection of insulin solution in rats. When insulin solutions in the absence of ,-CyDs were injected into the dorsal subcutaneous tissues of rats, the absolute bioavailability of insulin calculated from plasma immunoreactive insulin (IRI) levels was approximately 50%. When maltosyl-,-cyclodextrin was added to the solutions, there was no change in the plasma IRI levels and hypoglycaemia compared with those of the insulin-alone solution. Dimethyl-,-cyclodextrin decreased the bioavailability of insulin, although it increased the maximal concentration of IRI in plasma and the capillary permeability of the fluorescein isothiocyanatedextran 40, a non-degraded permeation marker. When insulin solutions containing sulphobutyl ether-,-cyclodextrin with a degree of substitution of the sulphobutyl group of 3,9 (SBE4-,-CyD) were injected, the IRI level rapidly increased and maintained higher IRI levels for at least 8h. The bioavailability of the insulin/SBE4-,-CyD system was about twice that of insulin alone and approached 96%. The enhancing effects of SBE4-,-CyD may be in part due to the inhibitory effects of SBE4-,-CyDs on the enzymatic degradation and/or the adsorption of insulin onto the subcutaneous tissue at the injection site, although this does not apparently facilitate capillary permeability. These results suggest that SBE4-,-CyD in aqueous insulin injection for subcutaneous administration is useful for improving the bioavailability and the hence the pharmacological effects of insulin. [source]


Skin Permeation of Testosterone and its Ester Derivatives in Rats

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2000
MI-KYEONG KIM
To establish the optimum conditions for improving the transdermal delivery of testosterone, we studied the relationship between the lipophilicity of testosterone ester derivatives and the rat skin permeation rate of testosterone. We performed a rat skin permeation study of testosterone and its commercially available ester derivatives, testosterone hemisuccinate, testosterone propionate and testosterone-17,-cypionate, using an ethanol/water co-solvent system. The aqueous solubility and rat skin permeation rate of each drug, saturated in various compositions of an ethanol/water system, was determined at 37°C. The aqueous solubility of testosterone and its ester derivatives increased exponentially as the volume fraction of ethanol increased up to 100% (v/v). The stability of testosterone propionate in both the skin homogenate and the extract was investigated to observe the enzymatic degradation during the skin permeation process. Testosterone propionate was found to be stable in the isotonic buffer solution and in the epidermis-side extract for 10 h at 37°C. However, in the skin homogenate and the dermis-side extract testosterone propionate rapidly degraded producing testosterone, implying that testosterone propionate rapidly degraded to testosterone during the skin permeation process. The steady-state permeation rates of testosterone in the ethanol/water systems increased exponentially as the volume fraction of ethanol increased, reaching the maximum value (2.69 ± 0.69 ,g cm,2 h,1) at 70% (v/v) ethanol in water, and then decreasing with further increases in the ethanol volume fraction. However, in the skin permeation study with testosterone esters saturated in 70% (v/v) ethanol in water system, testosterone esters were hardly detected in the receptor solution, probably due to the rapid degradation to testosterone during the skin permeation process. Moreover, a parabolic relationship was observed between the permeation rate of testosterone and the log P values of ester derivatives. Maximum flux was achieved at a log P value of around 3 which corresponded to that of testosterone (log P = 3.4). The results showed that the skin permeation rate of testosterone and its ester derivatives was maximized when these compounds were saturated in a 70% ethanolic solution. It was also found that a log P value of around 3 is suitable for the skin permeation of testosterone related compounds. [source]