Home About us Contact | |||
Enriched Artemia (enriched + artemia)
Selected AbstractsEffect of supplemental l -ascorbyl-2-polyphosphate in enriched live food on the antioxidant defense system of Penaeus vannamei of different sizes exposed to ammonia-NAQUACULTURE NUTRITION, Issue 5 2006W.-N. WANG Abstract The effects of supplemental l -ascorbyl-2-polyphosphate (APP) in enriched live food (Artemia) on reactive oxygen intermediate (ROI) and free radical scavenging enzyme (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione transferase) activities in the muscle of Penaeus vannamei of two sizes exposed to ambient ammonia-N, were investigated. Significantly, decreased ROI value was found in prawns fed on enriched Artemia compared with those fed on starved Artemia (P < 0.05); the decrease was 24% and 36%, respectively. In both size classes, the antioxidant enzyme activities in prawns fed on enriched Artemia were higher than in those fed on starved Artemia (P < 0.05). The results demonstrated that the supplementation of ascorbic acid in enriched live food (Artemia) enhanced the antioxidant capacity of prawn, increasing its defense system that may fight against environmental stress, leading to impaired ammonia toxicity. [source] Iodine enrichment of Artemia and enhanced levels of iodine in Atlantic halibut larvae (Hippoglossus hippoglossus L.) fed the enriched ArtemiaAQUACULTURE NUTRITION, Issue 2 2006M. MOREN Abstract Flatfish metamorphosis is initiated by the actions of thyroid hormones (TH) and iodine is an essential part of these hormones. Hence, an iodine deficiency may lead to insufficient levels of TH and incomplete metamorphosis. In this study, different iodine sources for enrichment of Artemia were evaluated and the levels of iodine obtained in Artemia were within the range of 60,350 ,g g,1 found in copepods. Larval Atlantic halibut was fed Artemia enriched with either normal DC-DHA Selco or DC-DHA Selco (commercial enrichments) supplemented with iodine from days 9 to 60 postfirst feeding. There was no significant difference in growth, mortality or metamorphic development between the groups. The analyses showed that we were able to enrich Artemia with iodine. Further, the larvae-fed iodine-enriched Artemia had higher whole body iodine concentration compared to larvae-fed Artemia without iodine enrichment. [source] Fatty acid profiles of spiny lobster (Panulirus homarus) phyllosoma fed enriched ArtemiaAQUACULTURE RESEARCH, Issue 10 2010Kajal Chakraborty Abstract Three different life stages of spiny lobster larvae (phyllosoma) of Panulirus homarus were fed A1-Selco-enriched Artemia in two culture treatments, one with the microalgae Nannochloropsis salina (green water) and the other without the microalgae (clear water) to assess the ability to manipulate their fatty acid composition. Phyllosoma fed with 3-h A1-Selco-enriched Artemia salina attained Stage VIII (5.3 mm) and Stage V (3.4 mm) in 42 days in the green and clear water treatments respectively. The higher content of the essential fatty acids in N. salina (eicosapentaenoic acid, 25.8%; arachidonic acid, 9.5%; and docosahexaenoic acid, 4.2%) in the green water system increased the fatty acid content of the live food Artemia, and ultimately the phyllosoma. In spite of phyllosoma being fed with enriched Artemia in the clear water system, the total polyunsaturated fatty acid content of the early (Stages I,III) and mid stage (Stages IV,V) phyllosoma were significantly smaller (18.8% and 14.6% respectively) (P<0.05) than in the green water system (25.3% and 21.2% respectively). These results indicate the positive role of the microalgae in boosting the essential fatty acid content of lobster larvae. [source] |