Enhancement Factor (enhancement + factor)

Distribution by Scientific Domains


Selected Abstracts


Microfluidic chip-capillary electrophoresis for two orders extension of adjustable upper working range for profiling of inorganic and organic anions in urine

ELECTROPHORESIS, Issue 18 2010
Wen Peng Guo
Abstract To meet the need for onsite monitoring of urine anions, a microfluidic chip-capillary electrophoresis device was designed, fabricated and tested to extend the upper CE working range for an enhancement up to 500 fold (100 fold for sample dilution and 5 folds for CE injection) in order to analyze highly variable anionic metabolites in urine samples. Capillaries were embedded between two PMMA plates with laser-fabricated microchannel patterns to produce the microfluidic chip-capillary electrophoresis to perform standard/sample dilution and CE injection with adjustable dilution ratios. A circular ferrofluid valve was incorporated on-chip to perform cleanup and conditioning, mixing and dilution, injection and CE separation. Under optimized conditions, a complete assay for four samples can be achieved within an hour for 15 anions commonly found in urines. Satisfactory working ranges (0.005,500,mM) and low detection limits (0.5,6.5,,M based on S/N =2) are obtained with satisfactory repeatability (RSD, n=5) 0.52,0.87% and 4.1,6.5% for migration time and peak area, respectively. The working ranges with two orders adjustable upper extension are adequate to cover all analytes concentrations commonly found in human urine samples. The device fabricated shows sufficiently large experimentally verifiable enhancement factor to meet the application requirements. Its reliability was established by more than 94% recoveries of spiked standards and agreeable results from parallel method comparison with conventional ion chromatography method. The extension of the upper CE working range enables flexible onsite dilution on demand, a quick turn-around of results, and a low-cost device suitable for bedside monitoring of patients under critical conditions for metabolic disorders. [source]


Integrated microdevice for preconcentration and separation of a wide variety of compounds by electrochromatography

ELECTROPHORESIS, Issue 3 2009
Gaelle Proczek
Abstract An integrated microdevice was developed to couple on-chip SPE to separation by channel electrochromatography. An acrylate-based monolith was synthesized within a glass microdevice by photoinitiated polymerization. It was used for both separation and preconcentration by direct injection on the head of the stationary phase or by confining the preconcentration step in a given zone of the stationary phase. The composition of the polymerization mixture was chosen to achieve a monolithic material containing both hydrophobic and charged moieties to ensure an electroosmotic flow for separation. As a consequence the extraction procedure occurs via hydrophobic and ionic interactions. Neutral, ionizable and charged compounds were successfully preconcentrated and separated within the microdevice through electrochromatographic mechanisms, highlighting the versatility of this device. The performance of the integrated microdevice was demonstrated with the preconcentration and separation of a mixture of PAHs for which a signal enhancement factor (SEF) of 270 was achieved within 120,s of preconcentration. In the case of charged and ionizable compounds, according to the electrolyte composition, contributions of both reverse-phase and ion-exchange mechanisms were used to perform effective electrochromatographic preconcentration. A SEF of 250 was obtained for the model-charged compound within 20,s of preconcentration. Finally, the potentials of on-chip preconcentrate and separate both neutral and ionized compounds have been demonstrated using a mixture of model compounds. [source]


In-capillary solid-phase extraction,capillary electrophoresis for the determination of chlorophenols in water

ELECTROPHORESIS, Issue 16 2006
Luo-Hong Zhang
Abstract A novel CE method combined with SPE in a single capillary was developed for analysis of chlorophenols in water. A frit of 0.5,mm was first made by a sol-gel method, followed by packing a SPE sorbent in the inlet end of the capillary. Two phenol derivatives, 2,4-dichlorophenol and 2,4,5-trichlorophenol, were used as the model compounds. By loading sample solutions into the capillary, the two chlorophenols were extracted into the sorbent. They were desorbed by injecting only about 4,nL of methanol. Finally, the analytes were separated by conventional CE. The technique provided a concentration enhancement factor of over 4000-fold for both chlorophenols. The detection limits (S/N,=,3) of 2,4-dichlorophenol and 2,4,5-trichlorophenol were determined to be 0.1,ng/mL and 0.07,ng/mL, respectively. For replicate analyses of 5,ng/mL of 2,4-dichlorophenol, within-day and between-day RSDs of migration time, peak height and peak area were in the range of 1.8,2.0%, 4.0,4.4% and 4.1,4.6%, respectively. The method shows wide linear range, acceptable reproducibility and excellent sensitivity, and it was applied to the analyses of spiked river water samples. The capillary packed with the SPE sorbents can be used for more than 400 runs without performance deterioration. [source]


Influence of line routing and terminations on transient overvoltages in LV power installations

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 8 2009
Ibrahim A. Metwally
Abstract IEC 62305-4 gives the rules for the selection and the installation of surge protective devices (SPDs), where the maximum enhancement factor is considered to be equal to 2 in the worst case of open-circuit condition. The objective of the present paper is to check this relation for equipment connected to low-voltage (LV) power system. The LV power system is considered as TN-S system with different routings in three- and six-storey buildings. The terminals of apparatus are substituted by a variety of different loads, namely, resistances, inductances, and capacitances. All Maxwell's equations are solved by the method of moments (MoM) and the voltage is calculated at the apparatus terminals. The SPD itself is simulated by a voltage source at the ground floor. The results reveal that the voltage at the apparatus terminals may overshoot the SPD protection level by a factor of 3 irrespective of the number of floors and loops. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Engineering Nanoparticle Cluster Arrays for Bacterial Biosensing: The Role of the Building Block in Multiscale SERS Substrates

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
Linglu Yang
Abstract Noble metal nanoparticle cluster arrays (NCAs) are a novel class of engineered substrates for surface enhanced Raman spectroscopy (SERS), in which the noble metal nanoparticles interact on multiple length scales to create a multiscale E-field cascade enhancement. In this work the role of the building block for the NCA performance is quantified. Periodic NCAs with constant cluster diameter (D = 200 nm) but variable nanoparticle diameter (d) and intercluster separation (,) were assembled on glass and their optical response and SERS enhancement were systematically characterized as a function of D, ,, and d. An increase of d from 40 to 80 nm and simultaneous decrease of , from 200 to 50 nm led to an improvement of the ensemble averaged SERS enhancement factor by a factor of up to ,8. The coefficient of variation (cv) of the enhancement factors (G) is significantly lower for the d = 80 nm NCAs than for the d = 40 nm and d = 60 nm NCAs. Optimized (D = 200 nm, , = 50 nm, d = 80 nm) NCAs show the overall highest signal reproducibility of all investigated NCAs and random nanoparticle substrates and achieve effective single cell detection sensitivity. [source]


Tailored Plasmonic Gratings for Enhanced Fluorescence Detection and Microscopic Imaging

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2010
Xiaoqiang Cui
Abstract The ability to precisely control the pattern of metallic structures at the micro- and nanoscale for surface plasmon coupling has been demonstrated to be essential for signal enhancement in fields such as fluorescence and surface-enhanced Raman scattering. In the present study, a series of silver coated gratings with tailored duty ratio and depth and a periodical pitch of 400,nm are designed and implemented. The influence of the grating profile on plasmonic properties and the corresponding enhancement factor are investigated by angular scanning measurement of reflectivity and fluorescence intensity and by finite difference time domain simulation. The application of the substrate in the enhanced fluorescence imaging detection of labeled protein is also investigated. This substrate has a wide range of potential applications in areas including biodiagnostics, imaging, sensing, and photovoltaic cells. [source]


Fabrication of a Macroporous Microwell Array for Surface-Enhanced Raman Scattering

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009
Martina Zamuner
Abstract Here, a colloidal templating procedure for generating high-density arrays of gold macroporous microwells, which act as discrete sites for surface-enhanced Raman scattering (SERS), is reported. Development of such a novel array with discrete macroporous sites requires multiple fabrication steps. First, selective wet-chemical etching of the distal face of a coherent optical fiber bundle produces a microwell array. The microwells are then selectively filled with a macroporous structure by electroless template synthesis using self-assembled nanospheres. The fabricated arrays are structured at both the micrometer and nanometer scale on etched imaging bundles. Confocal Raman microscopy is used to detect a benzenethiol monolayer adsorbed on the macroporous gold and to map the spatial distribution of the SERS signal. The Raman enhancement factor of the modified wells is investigated and an average enhancement factor of 4,×,104 is measured. This demonstrates that such nanostructured wells can enhance the local electromagnetic field and lead to a platform of ordered SERS-active micrometer-sized spots defined by the initial shape of the etched optical fibers. Since the fabrication steps keep the initial architecture of the optical fiber bundle, such ordered SERS-active platforms fabricated onto an imaging waveguide open new applications in remote SERS imaging, plasmonic devices, and integrated electro-optical sensor arrays. [source]


PX-478, an inhibitor of hypoxia-inducible factor-1,, enhances radiosensitivity of prostate carcinoma cells,

INTERNATIONAL JOURNAL OF CANCER, Issue 10 2008
Sanjeewani T. Palayoor
Abstract Overexpression of hypoxia-inducible factor-1, (HIF-1,) in human tumors is associated with poor prognosis and poor outcome to radiation therapy. Inhibition of HIF-1, is considered as a promising approach in cancer therapy. The purpose of this study was to test the efficacy of a novel HIF-1, inhibitor PX-478 as a radiosensitizer under normoxic and hypoxic conditions in vitro. PC3 and DU 145 prostate carcinoma cells were treated with PX-478 for 20 hr, and HIF-1, protein level and clonogenic cell survival were determined under normoxia and hypoxia. Effects of PX-478 on cell cycle distribution and phosphorylation of H2AX histone were evaluated. PX-478 decreased HIF-1, protein in PC3 and DU 145 cells. PX-478 produced cytotoxicity in both cell lines with enhanced toxicity under hypoxia for DU-145. PX-478 (20 ,mol/L) enhanced the radiosensitivity of PC3 cells irradiated under normoxic and hypoxic condition with enhancement factor (EF) 1.4 and 1.56, respectively. The drug was less effective in inhibiting HIF-1, and enhancing radiosensitivity of DU 145 cells compared to PC3 cells with EF 1.13 (normoxia) and 1.25 (hypoxia) at 50 ,mol/L concentration. PX-478 induced S/G2M arrest in PC3 but not in DU 145 cells. Treatment of PC3 and DU 145 cells with the drug resulted in phosphorylation of H2AX histone and prolongation of ,H2AX expression in the irradiated cells. PX-478 is now undergoing Phase I clinical trials as an oral agent. Although the precise mechanism of enhancement of radiosensitivity remains to be identified, this study suggests a potential role for PX-478 as a clinical radiation enhancer. Published 2008 Wiley-Liss, Inc. [source]


Hydrogen storage properties of B- and N-doped microporous carbon

AICHE JOURNAL, Issue 7 2009
Lifeng Wang
Abstract A B- and N-doped microporous carbon has been synthesized via a substitution reaction. The obtained carbon exhibited much higher surface area than the previously reported B- and N-doped carbon. The hydrogen storage measurements indicated that the B- and N-doped microporous carbon had a 53% higher storage capacity than the carbon materials with similar surface areas. Furthermore, hydrogen storage via spillover was studied on Ru-supported B- and N-doped microporous carbon and a storage capacity of 1.2 wt % at 298 K and 10 MPa was obtained, showing an enhancement factor of 2.2. Ab initio molecular orbital calculations were also performed for the binding energies between the spiltover hydrogen atom and various sites on the doped carbon. The theoretical calculations can explain the experimental results well, which also shed light on the most favorable and possible sites with which the spiltover hydrogen atoms bind. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Modeling of CO2 absorber using an AMP solution

AICHE JOURNAL, Issue 10 2006
Jostein Gabrielsen
Abstract An explicit model for carbon dioxide (CO2) solubility in an aqueous solution of 2-amino-2-methyl-1-propanol (AMP) has been proposed and an expression for the heat of absorption of CO2 has been developed as a function of loading and temperature. A rate-based steady-state model for CO2 absorption into an AMP solution has been proposed, using both the proposed expression for the CO2 solubility and the expression for the heat of absorption along with an expression for the enhancement factor and physicochemical data from the literature. The proposed model has successfully been applied to absorption of CO2 into an AMP solution in a packed tower and validated against pilot-plant data from the literature. © 2006 American Institute of Chemical Engineers AIChE J, 2006 [source]


In vitro transdermal iontophoretic delivery of leuprolide,mechanisms under constant voltage application

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2003
Charu Kochhar
Abstract The transdermal iontophoretic delivery of Leuprolide, a nonapeptide LHRH agonist was studied with the aim of understanding the mechanisms of iontophoresis. Permeation studies were carried out at pH 4.5 and 7.2, at which the average ionic valence of the drug molecule was roughly 2 and 1, respectively. Heat-separated human epidermal membrane was subjected to constant voltage within the range of 250 to 1000 mV during the iontophoretic phase. Iontophoretic enhancement at pH 7.2 was greated than at 4.5. A model for iontophoretic enhancement was developed that takes into consideration the membrane alterations caused by iontophoresis depicted as increased porosity and the permeation through lipid pathways of the stratum corneum. Model-based evaluation yielded that first, the porosity increased with the applied voltage to as much as three times the original at 1000 mV. Second, the lipid pathways contributed approx. 20% to the total permeation during the passive phase. Third, the electro-osmotic flow contributed significantly to the enhancement and its direction was from anode to cathode at pH 7.2 and the opposite at pH 4.5. The magnitude of the electro-osmotic flow was at pH 4.5 somewhat lower than at pH 7.2. Addition of a negatively charged water soluble peptide, Acetyl leucine leucinolyl phosphate as an adjuvant led to twofold increase in the enhancement factor at pH 4.5 and a decrease in the magnitude of the electro-osmotic flow from cathode to anode. Repeated iontophoretic applications of 250 mV on the same skin specimen resulted in same enhancement every time and did not cause any barrier alterations when applied for 1 h every 24 h, which was not the case if the duration between the two iontophoretic applications was only 3 h. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 92:84,96, 2003 [source]


Investigation of nail permeation enhancement by chemical modification using water as a probe

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2002
Gouri G. Malhotra
Abstract Our objective was to screen molecules that could interact with keratin in the human nail and thereby improve the topical penetration of actives into and through the nail plate. We used specialized Franz-type diffusion cells for our permeation experiments and water as a marker molecule. Aqueous/hydroalcoholic gels containing the enhancers were spiked with tritiated water and compared with a control (without enhancer). We computed the normalized water flux (defined as a product of flux and nail thickness) for each gel. We defined an enhancement factor for water as the ratio of the normalized water flux from a gel containing enhancer to that of the control. Our results indicate that the chemical structure of the modifier is most important in determining its ability to enhance penetration. The best enhancement effect was obtained using N-(2-mercaptopropionyl) glycine, a mercaptan derivative of an amino acid, in combination with urea. The concentration of each chemical modifier was linearly related to normalized water flux and mercaptan levels were more important that urea levels in penetration enhancement. Barrier integrity of nails was compromised after treatment with effective chemical modifiers. Thus, we have developed a suitable technique to screen nail penetration enhancers using water as a probe. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:312,323, 2002 [source]


Adsorption of 4,4,-biphenyl diisocyanide on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering

JOURNAL OF RAMAN SPECTROSCOPY, Issue 4 2003
Sang-Woo Joo
Abstract We investigated the spectral features of the ,(NC) bands when 4,4,-biphenyl diisocyanide (BPDNC) is adsorbed on gold nanoparticle surfaces by surface-enhanced Raman scattering (SERS). The mode of adsorption of BPDNC on gold nanoparticles was found to change with the bulk concentration. At low concentrations of BPDNC, only the ,(NC)bound band was conspicuous at ,2185 cm,1 and the free NC stretching band was barely detected in the SERS spectra. When the bulk concentration was increased, the ,(NC)free band became prominent at ,2123 cm,1. BPDNC was assumed to bridge two different gold particles at low concentrations, but as the concentration was increased, the bridge appeared to be broken and bonded to the gold particle only via one of the two isocyanide groups. On the basis of the electromagnetic surface selection rule, we attempted to explain the orientation of the adsorbate on Au surfaces by determining the relative enhancement factor of each vibrational band. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Impact of Thermal Diffusion on Densification During SPS

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2009
Eugene A. Olevsky
Spark-plasma sintering (SPS) has the potential for rapid (with heating rates reaching several hundred K/min) and efficient consolidation of a broad spectrum of powder materials. Possible mechanisms of the enhancement of consolidation in SPS versus conventional techniques of powder processing are categorized with respect to their thermal and athermal nature. This paper analyzes the influence of thermal diffusion, which is an SPS consolidation enhancement factor of a thermal nature. The Ludwig,Soret effect of thermal diffusion causes concentration gradients in two-component systems subjected to a temperature gradient. The thermal diffusion-based constitutive mechanism of sintering results from the additional driving force instigated by spatial temperature gradients, which cause vacancy diffusion. This mechanism is a commonly omitted addition to the free-surface curvature-driven diffusion considered in conventional sintering theories. The interplay of three mechanisms of material transport during SPS is considered: surface tension- and external stress-driven grain-boundary diffusion, surface tension- and external stress-driven power-law creep, and temperature gradient-driven thermal diffusion. It is shown that the effect of thermal diffusion can be significant for ceramic powder systems. Besides SPS, the results obtained are applicable to the ample range of powder consolidation techniques, which involve high local temperature gradients. The case study conducted on the alumina powder SPS demonstrates the correlation between the modeling and experimental data. It is noted that this study considers only one of many possible mechanisms of the consolidation enhancement during SPS. Further efforts on the modeling of field-assisted powder processing are necessary. [source]


Asteroid photometric and polarimetric phase curves: Joint linear-exponential modeling

METEORITICS & PLANETARY SCIENCE, Issue 12 2009
K. Muinonen
Here we model the two phase curves jointly at phase angles ,25° using a linear-exponential model, accounting for the opposition effect in disk-integrated brightness and the negative branch in the degree of linear polarization. We apply the MCMC methods to V-band phase curves of asteroids 419 Aurelia (taxonomic class F), 24 Themis (C), 1 Ceres (G), 20 Massalia (S), 55 Pandora (M), and 64 Angelina (E). We show that the photometric and polarimetric phase curves can be described using a common nonlinear parameter for the angular widths of the opposition effect and negative-polarization branch, thus supporting the hypothesis of common physical mechanisms being responsible for the phenomena. Furthermore, incorporating polarimetric observations removes the indeterminacy of the opposition effect for 1 Ceres. We unveil a trend in the interrelation between the enhancement factor of the opposition effect and the angular width: the enhancement factor decreases with decreasing angular width. The minimum polarization and the polarimetric slope at the inversion angle show systematic trends when plotted against the angular width and the normalized photometric slope parameter. Our new approach allows improved analyses of possible similarities and differences among asteroidal surfaces. [source]


Scattering and absorption of electromagnetic waves on a plane with hemispherical bosses

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 11 2007
Xiaoxiong Gu
Abstract We apply multiple scattering equations to study the scattering of electromagnetic waves on a perfectly conducting plane surface with a random dense distribution of hemispherical bosses. We derive a multipole solution up to third order to analyze close range interactions between nearby bosses. Results show significant improvement of accuracy compared with the traditional dipole approximation solution. Absorption on a lossy embossed surface is obtained from the field solution for the perfectly conducting surface. The surface current and absorption enhancement factor are further computed numerically. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 2681,2686, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.22855 [source]


Molecular-beam epitaxy fabrication and analysis of GaN nanorods on patterned silicon-on-insulator substrate

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 9 2008
J. U. Seo
Abstract GaN nanorods field emission arrays (FEAs) were fabricated on patterned silicon-on-insulator substrates with 10×10 ,m2 and 1×1 ,m2 periodic-windows by molecular beam epitaxy. Their morphologies and field emission characteristics were investigated. FEAs fabricated on the 1×1 ,m2 periodic-window substrates exhibited lower threshold electric field of 2.6 V/,m, higher field emission current density of 10,3 A/cm2 and higher field enhancement factor of 1685 than those for the FEAs fabricated on the 10×10 ,m2 periodic-window substrates in spite of the reduced active areas. The improved field emission characteristics for the FEAs with smaller area periodic-window are considered to be due to the edge effect at the patterned area. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Cloud point extraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic selenium in environmental water samples

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 19 2006
Beibei Chen
A new method based on cloud point extraction (CPE) separation and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICPMS) detection has been proposed for the speciation of inorganic selenium in environmental waters. When the temperature of the system is higher than the cloud point temperature (CPT) of the selected surfactant Triton X-114, the complex of Se(IV) with ammonium pyrrolidine dithiocarbamate (APDC) seems to be extracted into the surfactant-rich phase, whereas the Se(VI) remains in aqueous solutions. Thus, an insitu separation of Se(IV) and Se(VI) could be realized. The concentrated analyte was introduced into the ETV-ICP mass spectrometer for determination of Se((IV) after dilution with 200,µL methanol. Se(VI) was reduced to Se(IV) prior to determining total selenium, and its assay was based on subtracting Se(IV) from total selenium. The main factors affecting the CPE and the vaporization behavior of the analyte were investigated in detail. Under the optimized experimental conditions, the limit of detection (LOD) for Se(IV) was 8.0,ng/L with an enhancement factor of 39 when 10,mL of sample solution was preconcentrated to 0.2,mL. The relative standard deviation (RSD) was found to be 3.9% (CSe(IV),=,1.0,µg/L, n,=,7). The proposed method was applied to the speciation of inorganic selenium in different environmental water samples with the recovery for the spiked samples in the range of 82,102%. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Absorption Rate of Carbon Dioxide by K2CO3 -KHCO3 DEA Aqueous Solution

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1-2 2005
K. Takahshi
Gas absorption rates of carbon dioxide from CO2 -air mixtures into K2CO3, K2CO3 -KHCO3, DEA and K2CO3 -KHCO3 -DEA solutions have been measured by using a wetted wall column. The method to determine the enhancement factor of chemical absorption is confirmed by the absorption of carbon dioxide in NaOH solution. The enhancement factor was correlated with the potassium concentration [K+] (= 2[K2CO3 + [KHCO3]), the DEA concentration, and the CO2 -loading ratio of the absorbent. The chemical reaction for CO2, absorption has been expressed by an (m,n)th order irreversible-reaction model, where the reaction orders are m = 1 for CO2, n = 1.35 for DEA, n = 0.6 for K2CO3, and n = 0.6 and 1.35 for K2CO3 and DEA respectively. Experimental values of the enhancement factor were successfully reproduced by the calculations, where the reaction rate constants reflected the effect of loading ratio of the absorbent with carbon dioxide. [source]


Prediction of the Removal Efficiency of a Novel Two-Stage Hybrid Scrubber for Flue Gas Desulfurization

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 1 2006
A. Bandyopadhyaya
Abstract Emission of SO2 from various industrial sources occurs in varying concentrations and quantities. The operation of scrubbers as SO2 control devices is getting more and more attention as pollution control regulations are tightened. Experimental investigations on the scrubbing of SO2 in a novel two-stage hybrid (spray-cum-bubble column) scrubber using water and dilute sodium alkali are reported. Empirical and semi-empirical correlations are developed for the prediction of the performances of the bubble and the spray sections in terms of various pertinent variables of the system for water and alkaline scrubbing, respectively. The contribution of the mass transfer enhancement factor towards the removal of SO2 has been exploited while developing the semi-empirical correlation for the prediction of performance in alkaline scrubbing. The predicted values are in excellent agreement with the experimental values. Finally, the operating features of the scrubber and design aspects are discussed in order to develop our understanding for practical applications. [source]


Multilayer Substrate-Mediated Tuning Resonance of Plasmon and SERS EF of Nanostructured Silver,

CHEMPHYSCHEM, Issue 12 2010
Lian C. T. Shoute Dr.
Abstract A thin-film of dielectric on a reflecting surface constituting a multilayer substrate modulates light intensity due to the interference effect. A nanostructure consisting of randomly oriented silver particles of different shapes, sizes, and interparticle spacings supports multiple plasmon resonances and is observed to have a broad extinction spectrum that spans the entire visible region. Combining the two systems by fabricating the nanostructure on the thin-dielectric film of the multilayer substrate yields a new composite structure which is observed to modulate both the extinction spectrum and the SERS EF (surface enhanced Raman scattering enhancement factor) of the nanostructure as the thickness of the thin-film dielectric is varied. The frequency and intensity of the visible extinction spectrum vary dramatically with the dielectric thickness and in the intermediate thickness range the spectrum has no visible band. The SERS EF determined for the composite structure as a function of the thin-film dielectric thickness varies by several orders of magnitude. Strong correlation between the magnitude of the SERS EF and the extinction intensity is observed over the entire dielectric thickness range indicating that the extinction spectrum corresponds to the excitation of the plasmon resonances of the nanostructure. A significant finding which has potential applications is that the composite structure has synergic effect to boost SERS EF of the nanostructure by an order of magnitude or more compared to the same nanostructure on an unlayered substrate. [source]


Electrokinetic supercharging for highly efficient peptide preconcentration in capillary zone electrophoresis

ELECTROPHORESIS, Issue 7 2008
Jean-Marc Busnel
Abstract Electrokinetic supercharging has been integrated in CZE for the development of a highly sensitive methodology for protein tryptic digest analysis. A careful choice of the experimental conditions led to sensitivity enhancement factors between 1000 and 10,000 whilst maintaining a satisfactory resolution. Peptides in the low nanomolar concentration range have been detected despite the use of the poorly sensitive UV absorbance detection mode. The buffer system used in this study is fully suitable for coupling CE to MS. [source]


Trace determination of arsenic species by capillary electrophoresis with direct UV detection using sensitivity enhancement by counter- or co-electroosmotic flow stacking and a high-sensitivity cell

ELECTROPHORESIS, Issue 12-13 2003
Baoguo Sun
Abstract Stacking techniques used independently and also with a high-sensitivity cell (HSC) were employed to optimise sensitivity and detection limits in the direct photometric detection of the following eight arsenic species by capillary zone electrophoresis (CZE): arsenite, arsenate, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), 4-hydroxy-3-nitrophenylarsonic acid (Roxarsone), p -aminophenylarsonic acid (p -ASA), 4-nitrophenylarsonic acid (4-NPAA), and phenylarsonic acid (PAA) (target analytes). The stacking mechanisms, optimised stacking and separation conditions, and concentration sensitivity enhancement factors were discussed and compared for (i) normal stacking mode (NSM, sometimes also referred to as field-amplified stacking) in an uncoated fused-silica capillary in the counter-electroosmotic flow (EOF) mode, (ii) large-volume sample stacking (LVSS) with polarity switching, and (iii) the less often applied stacking method of co-EOF NSM stacking with EOF reversal using a poly(diallydimethylammonium chloride) (PDDAC)-coated capillary. The optimal injection volumes were 7.4, 60 and 17.2% of the total capillary volume, for the above three methods, respectively. LVSS with polarity switching gave the lowest limit of detection (LOD). The use of the HSC further reduced the LOD of each target analytes by a factor of 5,8 times. By combining LVSS and HSC, LODs of the target analytes could be reduced by a factor of 218,311, to 5.61, 9.15, 11.1, and 17.1 ,g/L for As(III), DMA, MMA, and As(V), respectively. The method was demonstrated to be applicable to the determination of the target analytes in tap water and lake water, with recoveries in the range of 89.4,103.3%. [source]


Engineering Nanoparticle Cluster Arrays for Bacterial Biosensing: The Role of the Building Block in Multiscale SERS Substrates

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
Linglu Yang
Abstract Noble metal nanoparticle cluster arrays (NCAs) are a novel class of engineered substrates for surface enhanced Raman spectroscopy (SERS), in which the noble metal nanoparticles interact on multiple length scales to create a multiscale E-field cascade enhancement. In this work the role of the building block for the NCA performance is quantified. Periodic NCAs with constant cluster diameter (D = 200 nm) but variable nanoparticle diameter (d) and intercluster separation (,) were assembled on glass and their optical response and SERS enhancement were systematically characterized as a function of D, ,, and d. An increase of d from 40 to 80 nm and simultaneous decrease of , from 200 to 50 nm led to an improvement of the ensemble averaged SERS enhancement factor by a factor of up to ,8. The coefficient of variation (cv) of the enhancement factors (G) is significantly lower for the d = 80 nm NCAs than for the d = 40 nm and d = 60 nm NCAs. Optimized (D = 200 nm, , = 50 nm, d = 80 nm) NCAs show the overall highest signal reproducibility of all investigated NCAs and random nanoparticle substrates and achieve effective single cell detection sensitivity. [source]


Formation of Gold and Silver Nanoparticle Arrays and Thin Shells on Mesostructured Silica Nanofibers,

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2007
S. Zhang
Abstract Mesostructured silica nanofibers synthesized in high yields with cetyltrimethylammonium bromide as the structure-directing agent in HBr solutions are used as templates for the assembly of Au and Ag nanoparticles and the formation of thin Au shells along the fiber axis. Presynthesized spherical Au and Ag nanoparticles are adsorbed in varying amounts onto the silica nanofibers through bifunctional linking molecules. Nonspherical Au nanoparticles with sharp tips are synthesized on the nanofibers through a seed-mediated growth approach. The number density of nonspherical Au nanoparticles is controlled by varying the amount of seeded nanofibers relative to the amount of supplied Au precursor. This seed-mediated growth is further used to form continuous Au shells around the silica nanofibers. Both the Au- and Ag-nanoparticle/silica-nanofiber hybrid nanostructures and silica/Au core/shell fibers exhibit extinction spectra that are distinct from the spectra of Au and Ag nanoparticles in solution, indicating the presence of new surface plasmon resonance modes in the silica/Au core/shell fibers and surface plasmon coupling between closely spaced metal nanoparticles assembled on silica nanofibers. Spherical Au- and Ag-nanoparticle/silica-nanofiber hybrid nanostructures are further used as substrates for surface-enhanced Raman spectroscopy, and the enhancement factors of the Raman signals obtained on the Ag-nanoparticle/silica-nanofiber hybrid nanostructures are 2,×,105 for 4-mercaptobenzoic acid and 4-mercaptophenol and 7,×,107 for rhodamine,B isothiocyanate. These hybrid nanostructures are therefore potentially useful for ultrasensitive chemical and biological sensing by using molecular vibrational signatures. [source]


Epidermal growth factor receptor expression affects the efficacy of the combined application of saponin and a targeted toxin on human cervical carcinoma cells

INTERNATIONAL JOURNAL OF CANCER, Issue 6 2010
Diana Bachran
Abstract Cervical cancer is the second most common cancer in women worldwide. Targeting the epidermal growth factor receptor (EGFR) is a very promising approach since it is overexpressed in about 90% of cervical tumors. Here, we quantified the toxic effect of SE, a targeted toxin consisting of epidermal growth factor (EGF) as targeting moiety and the plant toxin saporin-3, on 3 common human cervical carcinoma cell lines (HeLa, CaSki and SiHa) and recently established lines (PHCC1 and PHCC2) from 2 different individuals. A human melanocytic and a mouse cell line served as negative control. Additionally, we combined SE with saponinum album, a saponin composite from Gypsophila paniculata, which exhibited synergistic properties in previous studies. The cell lines, except for SiHa cells, revealed high sensitivity to SE with 50% cell survival in the range of 5,24.5 nM. The combination with saponin resulted in a remarkable enhancement of cytotoxicity with enhancement factors ranging from 9,000-fold to 2,500,000-fold. The cytotoxicity of SE was clearly target receptor specific since free EGF blocks the effect and saporin-3 alone was considerably less toxic. For all cervical carcinoma cell lines, we evinced a clear correlation between EGFR expression and SE sensitivity. Our data indicate a potential use of targeted toxins for the treatment of cervical cancer. In particular, the combination with saponins is a promising approach since efficacy is drastically improved. [source]


Assessing the performances of some recently proposed density functionals for the description of bond dissociations involving organic radicals

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 12 2010
Vincent Tognetti
Abstract In this article, we have assessed the performances of some recently proposed density functionals for the prediction of reaction energies involving radicals, notably bond dissociations of small organic molecules or of TEMPO-based ones, and ,-scissions, focusing on our TCA family and on range-separated hybrids. It is found that no functional belonging to these two families is able to compete with the M0x one. We have tried to improve the performances of the range-separated hybrids by the optimization of the attenuation parameter, but the improvements for one dataset lead to an unavoidable deterioration for the others. Furthermore, the differences between two different approaches to the long-range/short-range separation are discussed in terms of average enhancement factors, emphasizing the crucial choice of the approximate scheme used for the short-range part. Finally, the influence of the geometries has been considered and found to be negligible for this kind of molecular sets, validating the usual single point energies strategies developed in such benchmarking assessments. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 [source]


Transungual iontophoretic transport of polar neutral and positively charged model permeants: Effects of electrophoresis and electroosmosis

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2008
Jinsong Hao
Abstract Transungual iontophoretic transport of model neutral permeants mannitol (MA), urea (UR), and positively charged permeant tetraethylammonium ion (TEA) across fully hydrated human nail plates at pH 7.4 were investigated in vitro. Four protocols were involved in the transport experiments with each protocol divided into stages including passive and iontophoresis transport of 0.1 and 0.3 mA. Water and permeant uptake experiments of nail clippings were also conducted to characterize the hydration and binding effects of the permeants to the nails. Iontophoresis enhanced the transport of MA and UR from anode to cathode, but this effect (electroosmosis) was marginal. The transport of TEA was significantly enhanced by anodal iontophoresis and the experimental enhancement factors were consistent with the Nernst,Planck theory predictions. Hindered transport was also observed and believed to be critical in transungual delivery. The barrier of the nail plates was stable over the time course of the study, and no significant electric field-induced alteration of the barrier was observed. The present results with hydrated nail plates are consistent with electrophoresis-dominant (the direct field effect) transungual iontophoretic transport of small ionic permeants with small contribution from electroosmosis. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:893,905, 2008 [source]


Fabrication of a range of SERS substrates on nanostructured multicore optical fibres

JOURNAL OF RAMAN SPECTROSCOPY, Issue 4 2007
D. J. White
Abstract An effective method for producing arrays of nanoscale triangles, rods and wells on the distal end of a silica optical fibre is presented. The structures are produced by applying a wet-etch procedure to drawn-down imaging fibres. Structural variation is achieved by altering the final diameter of the drawn fibre. Feature sizes of less than 100 nm can be readily achieved in this way. When coated with silver, surface-enhanced Raman scattering enhancement factors of over 106 can be achieved, depending on the size and shape of the structures present. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Surface-enhanced Raman scattering of 4,4,-dicyanobiphenyl on gold and silver nanoparticle surfaces

JOURNAL OF RAMAN SPECTROSCOPY, Issue 6 2002
Chung-ro Lee
The adsorption behavior of 4,4,-dicyanobiphenyl (DCBP) on Ag and Au nanoparticle surfaces was studied by surface-enhanced Raman scattering (SERS). The absence of the ring CH band denoted a flat orientation of the biphenyl ring on Ag and Au. The red shift of the ,8a band indicated a direct ring ,-orbital interaction with the surfaces. The two benzene rings of DCBP appeared to lie on the same plane with a ,-type interaction upon adsorption on the surfaces. The ,(CN) bands were blue shifted in the Ag and Au SERS spectra by 2 and 22 cm,1, respectively from the ordinary Raman spectrum. The orientation of DCBP on the Ag and Au surfaces was analyzed by the relative enhancement factors of the vibrational bands based on the electromagnetic SERS selection rule. Copyright © 2002 John Wiley & Sons, Ltd. [source]