Home About us Contact | |||
Energy Stress (energy + stress)
Selected AbstractsRegulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromiseACTA PHYSIOLOGICA, Issue 1 2009A. Klip Abstract Skeletal muscle is the major store and consumer of fatty acids and glucose. Glucose enters muscle through glucose transporter 4 (GLUT4). Upon insufficient oxygen availability or energy compromise, aerobic metabolism of glucose and fatty aids cannot proceed, and muscle cells rely on anaerobic metabolism of glucose to restore cellular energy status. An increase in glucose uptake into muscle is a key response to stimuli requiring rapid energy supply. This chapter analyses the mechanisms of the adaptive regulation of glucose transport that rescue muscle cells from mitochondrial uncoupling. Under these conditions, the initial drop in ATP recovers rapidly, through a compensatory increase in glucose uptake. This adaptive response involves AMPK activation by the initial ATP drop, which elevates cell surface GLUT4 and glucose uptake. The gain in surface GLUT4 involves different signals and routes of intracellular traffic compared with those engaged by insulin. The hormone increases GLUT4 exocytosis through phosphatidylinositol 3-kinase and Akt, whereas energy stress retards GLUT4 endocytosis through AMPK and calcium inputs. Given that energy stress is a component of muscle contraction, and that contraction activates AMPK and raises cytosolic calcium, we hypothesize that the increase in glucose uptake during contraction may also involve a reduction in GLUT4 endocytosis. [source] Enhanced anti-predator defence in the presence of food stress in the water flea Daphnia magnaFUNCTIONAL ECOLOGY, Issue 2 2010Kevin Pauwels Summary 1. ,Many prey organisms show adaptive trait shifts in response to predation. These responses are often studied under benign conditions, yet energy stress may be expected to interfere with optimal shifts in trait values. 2. ,We exposed the water flea Daphnia magna to fish predation and food stress and quantified both life history responses as well as physiological responses (metabolic rate, stress proteins, energy storage and immune function) to explore the architecture of defence strategies in the face of the combined stressors and the occurrence of trade-offs associated with energy constraints. 3. ,All traits studied showed either an overall or clone-dependent response to food stress. The chronic response to predation risk was less strong for the measured physiological traits than for life history traits, and stronger under food stress than under benign conditions for age at maturity, intrinsic population growth rate and offspring performance (measured as juvenile growth). Immune function (measured as phenoloxidase activity) was lower under predation risk but only at high food, probably because minimum levels were maintained at low food. 4. ,Overall, food stress induced stronger adaptive predator-induced responses, whereas more energy was invested in reproduction under benign conditions at the cost of being less defended. Our results suggest that food stress may increase the capacity to cope with predation risk and underscore the importance of integrating responses to different stressors and traits, and show how responses towards one stressor can have consequences for the susceptibility to other stressors. [source] Attenuation of TCDD-induced oxidative stress by 670 nm photobiomodulation in developmental chicken kidneyJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2008Jinhwan Lim 2,3,7,8-Tetrachlorodibenzo- p -dioxin (TCDD), a potent developmental teratogen inducing oxidative stress and sublethal changes in multiple organs, provokes developmental renal injuries. In this study, we investigated TCDD-induced biochemical changes and the therapeutic efficacy of photobiomodulation (670 nm; 4 J/cm2) on oxidative stress in chicken kidneys during development. Eggs were injected once prior to incubation with TCDD (2 pg/g or 200 pg/g) or sunflower oil vehicle control. Half of the eggs in each dose group were then treated with red light once per day through embryonic day 20 (E20). Upon hatching at E21, the kidneys were collected and assayed for glutathione peroxidase, glutathione reductase, catalase, superoxide dimutase, and glutathione- S -transferase activities, as well as reduced glutathione and ATP levels, and lipid peroxidation. TCDD exposure alone suppressed the activity of the antioxidant enzymes, increased lipid peroxidation, and depleted available ATP. The biochemical indicators of oxidative and energy stress in the kidney were reversed by daily phototherapy, restoring ATP and glutathione contents and increasing antioxidant enzyme activities to control levels. Photobiomodulation also normalized the level of lipid peroxidation increased by TCDD exposure. The results of this study suggest that 670 nm photobiomodulation may be useful as a noninvasive treatment for renal injury resulting from chemically induced cellular oxidative and energy stress. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:230,239, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20233 [source] The evolution of human fatness and susceptibility to obesity: an ethological approachBIOLOGICAL REVIEWS, Issue 2 2006Jonathan C. K. Wells ABSTRACT Human susceptibility to obesity is an unusual phenomenon amongst animals. An evolutionary analysis, identifying factors favouring the capacity for fat deposition, may aid in the development of preventive public health strategies. This article considers the proximate causes, ontogeny, fitness value and evolutionary history of human fat deposition. Proximate causes include diet composition, physical activity level, feeding behaviour, endocrine and genetic factors, psychological traits, and exposure to broader environmental factors. Fat deposition peaks during late gestation and early infancy, and again during adolescence in females. As in other species, human fat stores not only buffer malnutrition, but also regulate reproduction and immune function, and are subject to sexual selection. Nevertheless, our characteristic ontogenetic pattern of fat deposition, along with relatively high fatness in adulthood, contrasts with the phenotype of other mammals occupying the tropical savannah environment in which hominids evolved. The increased value of energy stores in our species can be attributed to factors increasing either uncertainty in energy availability, or vulnerability to that uncertainty. Early hominid evolution was characterised by adaptation to a more seasonal environment, when selection would have favoured general thriftiness. The evolution of the large expensive brain in the genus Homo then favoured increased energy stores in the reproducing female, and in the offspring in early life. More recently, the introduction of agriculture has had three significant effects: exposure to regular famine; adaptation to a variety of local niches favouring population-specific adaptations; and the development of social hierarchies which predispose to differential exposure to environmental pressures. Thus, humans have persistently encountered greater energy stress than that experienced by their closest living relatives during recent evolution. The capacity to accumulate fat has therefore been a major adaptive feature of our species, but is now increasingly maladaptive in the modern environment where fluctuations in energy supply have been minimised, and productivity is dependent on mechanisation rather than physical effort. Alterations to the obesogenic environment are predicted to play a key role in reducing the prevalence of obesity. [source] Expression, crystallization and preliminary crystallographic analysis of the PAS domain of RsbP, a stress-response phosphatase from Bacillus subtilisACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 6 2009Masatomo Makino RsbP, a regulator of RNA polymerase ,B activity in Bacillus subtilis, is a phosphatase containing a Per,Arnt,Sim (PAS) domain in its N-terminal region that is expected to sense energy stresses such as carbon, phosphate or oxygen starvation. Energy-stress signals are transmitted to the PAS domain and activate the C-terminal phosphatase domain of RsbP, leading to activation of the downstream anti-anti-,B factor RsbV. Finally, the general stress response is induced to protect the cells against further stresses. The recombinant PAS domain of RsbP was crystallized by the sitting-drop vapour-diffusion technique using 40% PEG 400 as a precipitant. The crystals belonged to space group P21, with unit-cell parameters a = 55.2, b = 71.7, c = 60.2,Å, , = 92.1°. Diffraction data were collected to a resolution of 1.6,Å. [source] |