Home About us Contact | |||
Energy Deprivation (energy + deprivation)
Selected AbstractsPfCRT and the trans -vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IXMOLECULAR MICROBIOLOGY, Issue 1 2006Patrick G. Bray Summary It is accepted that resistance of Plasmodium falciparum to chloroquine (CQ) is caused primarily by mutations in the pfcrt gene. However, a consensus has not yet been reached on the mechanism by which resistance is achieved. CQ-resistant (CQR) parasite lines accumulate less CQ than do CQ-sensitive (CQS) parasites. The CQR phenotype is complex with a component of reduced energy-dependent CQ uptake and an additional component that resembles energy-dependent CQ efflux. Here we show that the required energy input is in the form of the proton electrochemical gradient across the digestive vacuole (DV) membrane. Collapsing the DV proton gradient (or starving the parasites of glucose) results in similar levels of CQ accumulation in CQS and CQR lines. Under these conditions the accumulation of CQ is stimulated in CQR parasite lines but is reduced in CQS lines. Energy deprivation has no effect on the rate of CQ efflux from CQR lines implying that mutant PfCRT does not function as an efflux pump or active carrier. Using pfcrt -modified parasite lines we show that the entire CQ susceptibility phenotype is switched by the single K76T amino acid change in PfCRT. The efflux of CQ in CQR lines is not directly coupled to the energy supply, consistent with a model in which mutant PfCRT functions as a gated channel or pore, allowing charged CQ species to leak out of the DV. [source] Regulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromiseACTA PHYSIOLOGICA, Issue 1 2009A. Klip Abstract Skeletal muscle is the major store and consumer of fatty acids and glucose. Glucose enters muscle through glucose transporter 4 (GLUT4). Upon insufficient oxygen availability or energy compromise, aerobic metabolism of glucose and fatty aids cannot proceed, and muscle cells rely on anaerobic metabolism of glucose to restore cellular energy status. An increase in glucose uptake into muscle is a key response to stimuli requiring rapid energy supply. This chapter analyses the mechanisms of the adaptive regulation of glucose transport that rescue muscle cells from mitochondrial uncoupling. Under these conditions, the initial drop in ATP recovers rapidly, through a compensatory increase in glucose uptake. This adaptive response involves AMPK activation by the initial ATP drop, which elevates cell surface GLUT4 and glucose uptake. The gain in surface GLUT4 involves different signals and routes of intracellular traffic compared with those engaged by insulin. The hormone increases GLUT4 exocytosis through phosphatidylinositol 3-kinase and Akt, whereas energy stress retards GLUT4 endocytosis through AMPK and calcium inputs. Given that energy stress is a component of muscle contraction, and that contraction activates AMPK and raises cytosolic calcium, we hypothesize that the increase in glucose uptake during contraction may also involve a reduction in GLUT4 endocytosis. [source] Protective Effect of HOE642, a Selective Blocker of Na+ -H+ Exchange, Against the Development of Rigor Contracture in Rat Ventricular MyocytesEXPERIMENTAL PHYSIOLOGY, Issue 1 2000Marisol Ruiz-Meana The objective of this study was to investigate the effect of Na+ -H+ exchange (NHE) and HCO3, -Na+ symport inhibition on the development of rigor contracture. Freshly isolated adult rat cardiomyocytes were subjected to 60 min metabolic inhibition (MI) and 5 min re-energization (Rx). The effects of perfusion of HCO3, or HCO3, -free buffer with or without the NHE inhibitor HOE642 (7 ,M) were investigated during MI and Rx. In HCO3, -free conditions, HOE642 reduced the percentage of cells developing rigor during MI from 79 ± 1% to 40 ± 4% (P < 0.001) without modifying the time at which rigor appeared. This resulted in a 30% reduction of hypercontracture during Rx (P < 0.01). The presence of HCO3, abolished the protective effect of HOE642 against rigor. Cells that had developed rigor underwent hypercontracture during Rx independently of treatment allocation. Ratiofluorescence measurement demonstrated that the rise in cytosolic Ca2+ (fura-2) occurred only after the onset of rigor, and was not influenced by HOE642. NHE inhibition did not modify Na+ rise (SBFI) during MI, but exaggerated the initial fall of intracellular pH (BCEFC). In conclusion, HOE642 has a protective effect against rigor during energy deprivation, but only when HCO3, -dependent transporters are inhibited. This effect is independent of changes in cytosolic Na+ or Ca2+ concentrations. [source] Expression of the Hypothalamic Transcription Factor Nhlh2 is Dependent on Energy AvailabilityJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2007K. R. Vella Mice with a deletion of the hypothalamic basic helix-loop-helix transcription factor Nhlh2 display adult onset obesity, implicating Nhlh2 in the neuronal circuits regulating energy availability. Nhlh2 colocalises with the hypothalamic thyrotrophin-releasing hormone (TRH) neurones in the paraventricular nucleus (PVN) and pro-opiomelanocortin (POMC) neurones in the arcuate nucleus. We show that Nhlh2 expression is significantly reduced in response to 24-h food deprivation in the arcuate nucleus, PVN, lateral hypothalamus, ventromedial hypothalamus (VMH) and dorsomedial hypothalamus (DMH). Food intake for 2 h following deprivation stimulates Nhlh2 expression in the arcuate nucleus and the PVN, and leptin injection following deprivation results in increased Nhlh2 expression in the arcuate nucleus, PVN, lateral hypothalamus, VMH, and DMH. Hypothalamic Nhlh2 expression in response to leptin injection is maximal by 2 h. Following leptin injection, Nhlh2 mRNA colocalises in POMC neurones in the arcuate nucleus and TRH neurones in the PVN. Nhlh2 mRNA expression in POMC neurones in the arcuate nucleus and TRH neurones in the PVN is reduced with energy deprivation and is stimulated with food intake and leptin injection. Modulation of POMC expression in response to changes in energy availability is not affected in mice with a targeted deletion of Nhlh2. However, deletion of Nhlh2 does result in loss of normal TRH mRNA expression in mice exposed to food deprivation and leptin stimulation. These data implicate Nhlh2 as a regulatory target of the leptin-mediated energy availability network of the hypothalamus, and TRH as a putative downstream target of Nhlh2. [source] |