Energy Available (energy + available)

Distribution by Scientific Domains


Selected Abstracts


The role of environmental effects on the optical transition energies and radial breathing mode frequency of single wall carbon nanotubes

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 10 2008
P. T. Araujo
Abstract In this paper we discuss the environmental effects on the radial breathing mode (RBM) spectra of Single Wall Carbon Nanotubes (SWNTs). We have shown that the environmental effect on the radial breathing mode frequencies can be explained by Van-der-Waals interactions. We here explore these interactions concerning its (n,m) dependence and curvature effects. Furthermore, most of the optical transition energies available in the literature (ELit.ii) are downshiftedwith respect to the optical transition energies for super-growth (S.G.) tubes (ES.G.ii). The effect on transition energies can be understood considering the effect of the dielectric constant of the medium in the excitonic optical transition. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories

ECOLOGY OF FRESHWATER FISH, Issue 1 2003
A. Klemetsen
Abstract ,,,Among the species in the family Salmonidae, those represented by the genera Salmo, Salvelinus, and Oncorhynchus (subfamily Salmoninae) are the most studied. Here, various aspects of phenotypic and life-history variation of Atlantic salmon Salmo salar L., brown trout Salmo trutta L., and Arctic charr Salvelinus alpinus (L.) are reviewed. While many strategies and tactics are commonly used by these species, there are also differences in their ecology and population dynamics that result in a variety of interesting and diverse topics that are challenging for future research. Atlantic salmon display considerable phenotypic plasticity and variability in life-history characters ranging from fully freshwater resident forms, where females can mature at approximately 10 cm in length, to anadromous populations characterised by 3,5 sea-winter (5SW) salmon. Even within simple 1SW populations, 20 or more spawning life-history types can be identified. Juveniles in freshwater can use both fluvial and lacustrine habitats for rearing, and while most smolts migrate to sea during the spring, fall migrations occur in some populations. At sea, some salmon undertake extensive oceanic migrations while other populations stay within the geographical confines of areas such as the Baltic Sea. At the other extreme are those that reside in estuaries and return to freshwater to spawn after spending only a few months at sea. The review of information on the diversity of life-history forms is related to conservation aspects associated with Atlantic salmon populations and current trends in abundance and survival. Brown trout is indigenous to Europe, North Africa and western Asia, but was introduced into at least 24 countries outside Europe and now has a world-wide distribution. It exploits both fresh and salt waters for feeding and spawning (brackish), and populations are often partially migratory. One part of the population leaves and feeds elsewhere, while another part stays as residents. In large, complex systems, the species is polymorphic with different size morphs in the various parts of the habitat. Brown trout feed close to the surface and near shore, but large individuals may move far offshore. The species exhibits ontogenetic niche shifts partly related to size and partly to developmental rate. They switch when the amount of surplus energy available for growth becomes small with fast growers being younger and smaller fish than slow growers. Brown trout is an opportunistic carnivore, but individuals specialise at least temporarily on particular food items; insect larvae are important for the young in streams, while littoral epibenthos in lakes and fish are most important for large trout. The sexes differ in resource use and size. Females are more inclined than males to become migratory and feed in pelagic waters. Males exploit running water, near-shore and surface waters more than females. Therefore, females feed more on zooplankton and exhibit a more uniform phenotype than males. The Arctic charr is the northernmost freshwater fish on earth, with a circumpolar distribution in the Holarctic that matches the last glaciation. Recent mtDNA studies indicate that there are five phylogeographic lineages (Atlantic, Arctic, Bering, Siberian and Acadian) that may be of Pleistocene origin. Phenotypic expression and ecology are more variable in charr than in most fish. Weights at maturation range from 3 g to 12 kg. Population differences in morphology and coloration are large and can have some genetic basis. Charr live in streams, at sea and in all habitats of oligotrophic lakes, including very deep areas. Ontogenetic habitat shifts between lacustrine habitats are common. The charr feed on all major prey types of streams, lakes and near-shore marine habitats, but has high niche flexibility in competition. Cannibalism is expressed in several cases, and can be important for developing and maintaining bimodal size distributions. Anadromy is found in the northern part of its range and involves about 40, but sometimes more days in the sea. All charr overwinter in freshwater. Partial migration is common, but the degree of anadromy varies greatly among populations. The food at sea includes zooplankton and pelagic fish, but also epibenthos. Polymorphism and sympatric morphs are much studied. As a prominent fish of glaciated lakes, charr is an important species for studying ecological speciation by the combination of field studies and experiments, particularly in the fields of morphometric heterochrony and comparative behaviour. [source]


Effects of pre- and postnatal polychlorinated biphenyl exposure on metabolic rate and thyroid hormones of white-footed mice,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2001
John B. French Jr.
Abstract Energy budgets have proven to be a valuable tool for predicting life history from physiological data in terrestrial vertebrates, yet these concepts have not been applied to the physiological effects of contaminants. Contaminants might affect energy budgets by imposing an additional metabolic cost or by reducing the overall amount of energy taken in; either process will reduce the energy available for production (i.e., growth or reproduction). This study examined whole animal energetic effects of polychlorinated biphenyl (PCB) exposure in white-footed mice (Peromyscus leucopus). Exposure to PCBs is known to reduce concentrations of plasma thyroid hormones, and thyroid hormones exert strong control over the rate of energy metabolism in mammals. Peromyscus leucopus that were proven breeders were fed PCBs in their food at 0, 10, and 25 ppm. Through lactation, offspring were exposed to PCB from conception and were maintained on the maternal diet to adulthood. No effects were seen on energy metabolism (O2 consumption, measured in adulthood) or on growth, but there were large dose-dependent decreases in thyroid hormone concentrations, particularly T4. The apparent disparity in our data between unchanged metabolic rates and 50% reductions in T4 concentrations can be rationalized by noting that free T3 (the fraction not bound to plasma protein) in treated mice was not significantly different from controls and that metabolism is most strongly influenced by free T3. Overall, this study did not demonstrate any energetic consequences of PCB exposure in P. leucopus at dietary concentrations up to 25 ppm. [source]


A thermodynamic analysis of the anaerobic oxidation of methane in marine sediments

GEOBIOLOGY, Issue 5 2008
D. E. LAROWE
ABSTRACT Anaerobic oxidation of methane (AOM) in anoxic marine sediments is a significant process in the global methane cycle, yet little is known about the role of bulk composition, temperature and pressure on the overall energetics of this process. To better understand the biogeochemistry of AOM, we have calculated and compared the energetics of a number of candidate reactions that microorganisms catalyse during the anaerobic oxidation of methane in (i) a coastal lagoon (Cape Lookout Bight, USA), (ii) the deep Black Sea, and (iii) a deep-sea hydrothermal system (Guaymas basin, Gulf of California). Depending on the metabolic pathway and the environment considered, the amount of energy available to the microorganisms varies from 0 to 184 kJ mol,1. At each site, the reactions in which methane is either oxidized to , acetate or formate are generally only favoured under a narrow range of pressure, temperature and solution composition , particularly under low (10,10 m) hydrogen concentrations. In contrast, the reactions involving sulfate reduction with H2, formate and acetate as electron donors are nearly always thermodynamically favoured. Furthermore, the energetics of ATP synthesis was quantified per mole of methane oxidized. Depending on depth, between 0.4 and 0.6 mol of ATP (mol CH4),1 was produced in the Black Sea sediments. The largest potential productivity of 0.7 mol of ATP (mol CH4),1 was calculated for Guaymas Basin, while the lowest values were predicted at Cape Lookout Bight. The approach used in this study leads to a better understanding of the environmental controls on the energetics of AOM. [source]


The Influence of Alkyl-Chain Length on Beta-Phase Formation in Polyfluorenes

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2009
Daniel W. Bright
Abstract Di- n -alkyl substituted polyfluorenes with alkyl chain lengths of 6, 7, 8, 9, and 10 carbon atoms (PF6, PF7, PF8, PF9, and PF10) are studied in dilute solution in MCH using optical spectroscopy. Beta-phase is formed upon cooling in solutions (, 7,µg mL,1) of PF7, PF8, and PF9 only, which is observed as an equilibrium absorption peak at , 437,nm and strong changes in the emission spectra. Beta-phase is formed upon thermal cycling to low temperature in solutions (,7,µg mL,1) of PF7, PF8, and PF9, which is observed as an equilibrium absorption peak at , 437,nm and strong changes in the emission spectra. Beta phase is found to occur more favorably in PF8 than in PF7 or PF9, which is attributed to a balance between two factors. The first is the dimer/aggregate formation efficiency, which is poorer for longer (more disordered) alkyl chain lengths, and the second is the Van der Waals bond energy available to overcome the steric repulsion and planarize the conjugated backbone, which is insufficient in the PF6 with a shorter alkyl chain. Beta phase formation is shown to be a result of aggregation, not a precursor to it. A tentative value of the energy required to planarize the fluorene backbone of (15.6,±,2.5) kJ mol,1 monomer is suggested. Excitation spectra of PF6, PF7, PF8, and PF9 in extremely dilute (, 10,ng mL,1) solution show that beta phase can form reversibly in dilute solutions of PF7, PF8 and PF9, which is believed to be a result of chain collapse or well dispersed aggregates being present in solution from dilution of more concentrated solutions. PF7, PF8, and PF9 also form beta phase in thermally cycled solid films spin-cast from MCH. However, in the films the PF7 formed a larger fraction of beta phase than the PF9, in contrast to the case in solutions, because it is less likely that the close-packed chains in the solid state will allow the formation of planarized chains with the longer PF9 side chains. [source]


The influence of large-scale atmospheric circulation on the surface energy balance of the King George Island ice cap

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 1 2001
Matthias Braun
Abstract During the austral summer 1997,1998 three automatic weather stations were operated at different altitudes on the sub-Antarctic ice cap of King George Island (South Shetland Islands). Snowmelt was derived from energy balance computations. Turbulent heat fluxes were calculated from meteorological measurements using the bulk aerodynamic approach, with net radiation being measured directly. Modelled ablation rates were compared with readings at ablation stakes and continuously measured snow height at a reference site. Snow depletion and daily snowmelt cycles could be well reproduced by the model. Generally, radiation balance provided the major energy input for snowmelt at all altitudes, whereas sensible heat flux was a second heat source only in lower elevations. The average latent heat flux was negligible over the entire measuring period. A strong altitudinal gradient of available energy for snowmelt was observed. Sensible heat flux as well as latent heat flux decreased with altitude. The measurements showed a strong dependence of surface energy fluxes and ablation rates on large-scale atmospheric conditions. Synoptic weather situations were analysed based on AVH RR infrared quicklook composite images and surface pressure charts. Maximum melt rates of up to 20 mm per day were recorded during a northwesterly advection event with meridional air mass transport. During this northwesterly advection, the contribution of turbulent heat fluxes to the energy available for snowmelt exceeded that of the radiation balance. For easterly and southerly flows, continentally toned, cold dry air masses dominated surface energy balance terms and did not significantly contribute to ablation. The link between synoptic situations and ablation is especially valuable, as observed climatic changes along the Antarctic Peninsula are attributed to changes in the atmospheric circulation. Therefore, the combination of energy balance calculations and the analysis of synoptic-scale weather patterns could improve the prediction of ablation rates for climate change scenarios. Copyright © 2001 Royal Meteorological Society [source]


Deployment algorithms for a power-constrained mobile sensor network

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 7 2010
Andrew Kwok
Abstract This paper presents distributed coverage algorithms for mobile sensor networks in which agents have limited power to move. Rather than making use of a constrained optimization technique, our approach accounts for power constraints by assigning non-homogeneously time-varying regions to each robot. This leads to novel partitions of the environment into limited-range, generalized Voronoi regions. The motion control algorithms are then designed to ascend the gradient of several types of locational optimization functions. In particular, the objective functions reflect the global energy available to the group and different coverage criteria. As we discuss in the paper, this has an effect on limiting each agent's velocity to save energy and balance its expenditure across the network. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Measurement of body size and abundance in tests of macroecological and food web theory

JOURNAL OF ANIMAL ECOLOGY, Issue 1 2007
SIMON JENNINGS
Summary 1Mean body mass (W) and mean numerical (N) or biomass (B) abundance are frequently used as variables to describe populations and species in macroecological and food web studies. 2We investigate how the use of mean W and mean N or B, rather than other measures of W and/or accounting for the properties of all individuals, can affect the outcome of tests of macroecological and food web theory. 3Theoretical and empirical analyses demonstrate that mean W, W at maximum biomass (Wmb), W when energy requirements are greatest (Wme) and the W when a species uses the greatest proportion of the energy available to all species in a W class (Wmpe) are not consistently related. 4For a population at equilibrium, relationships between mean W and Wme depend on the slope b of the relationship between trophic level and W. For marine fishes, data show that b varies widely among species and thus mean W is an unreliable indicator of the role of a species in the food web. 5Two different approaches, ,cross-species' and ,all individuals' have been used to estimate slopes of abundance,body mass relationships and to test the energetic equivalence hypothesis and related theory. The approaches, based on relationships between (1) log10 mean W and log10 mean N or B, and (2) log10 W and log10 N or B of all individuals binned into log10 W classes (size spectra), give different slopes and confidence intervals with the same data. 6Our results show that the ,all individuals' approach has the potential to provide more powerful tests of the energetic equivalence hypothesis and role of energy availability in determining slopes, but new theory and empirical analysis are needed to explain distributions of species relative abundance at W. 7Biases introduced when working with mean W in macroecological and food web studies are greatest when species have indeterminate growth, when relationships between W and trophic level are strong and when the range of species'W is narrow. [source]


The effect of body size on food consumption, absorption efficiency, respiration, and ammonia excretion by the inland silverside, Menidia beryllina (Cope) (Osteichthyes: Atherinidae)

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2003
M. A. Peck
Summary The inland silverside, Menidia beryllina (Cope), is an annual zooplanktivore that occurs in estuarine and freshwater habitats along the Atlantic and Gulf of Mexico coasts and drainages of the United States. Experiments were conducted at 25 ± 1°C to quantify the relationship between mean dry weight (WD) and rates of energy gain from food consumption (C), and energy losses as a result of respiration (R) and ammonia excretion (E) during routine activity and feeding by groups of fish. The absorption efficiency of ingested food energy (A) was also quantified. Rates of C, E, and R increased with WD by factors (b in the equation y = aWDb) equal to 0.462, 0.667, and 0.784, respectively. Mean (±SE) rates of energy loss during feeding were 1.6 ± 0.1 (R) and 3.4 ± 0.6 (E) times greater than those for unfed fish. Absorption efficiency was independent of WD and estimated to be 89% of C. From these measurements, the surplus energy available for growth and activity (G) and growth efficiency (K1) were estimated. Over the range in sizes of juveniles and adults (5,500 mg WD), predicted G and K1 values decreased from 7.42 to 0.20 J mg fish,1 day,1 and 63 to 21%, respectively. Measured and predicted bioenergetic parameters are discussed within an ecological context for a northern population of this species. [source]


Habitat and abundance of Balitoridae in small rivers of central Thailand

JOURNAL OF FISH BIOLOGY, Issue 10 2008
F. W. H. Beamish
Balitorids were collected, by electrofishing, from small rivers across central Thailand between October 2000 and March 2004. Total balitorid abundance for the 18 species averaged 3·8% of the cumulative total for all fishes. Balitorid species numbers and abundance varied directly with elevation to c. 400 m, substratum particle size and ambient silica concentration. Species numbers at stations were modest and few species were widely distributed. Species associations related significantly with elevation, temperature and ambient concentrations of dissolved oxygen and silica. Turbidity was also significant but probably an artefact. Habitat separation clearly occurs among some balitorids, particularly the less common species, and probably represents species-specific direct and indirect habitat effects. The more common balitorid species tended to occur in similar habitats where the significant factors approximated average values. For these species, coexistence is suggested to occur through food resource sharing possibly facilitated through adaptations. Balitorid distributions in low-order rivers are attributed to the direct and indirect influences of the environment on energy available for the performance of essential activities. [source]


Quiescent times in gamma-ray bursts , I. An observed correlation between the durations of subsequent emission episodes

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2001
Enrico Ramirez-Ruiz
Although more than 2000 astronomical gamma-ray bursts (GRBs) have been detected, the precise progenitor responsible for these events is unknown. The temporal phenomenology observed in GRBs can significantly constrain the different models. Here we analyse the time histories of a sample of bright, long GRBs, searching for the ones exhibiting relatively long (more than 5 per cent of the total burst duration) ,quiescent times', defined as the intervals between adjacent episodes of emission during which the gamma-ray count rate drops to the background level. We find a quantitative relation between the duration of an emission episode and the quiescent time elapsed since the previous episode. We suggest here that the mechanism responsible for the extraction and the dissipation of energy has to take place in a metastable configuration, such that the longer the accumulation period, the higher the stored energy available for the next emission episode. [source]


Coronal activity from dynamos in astrophysical rotators

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2000
Eric G. Blackman
We show that a steady mean-field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean-field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi-scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non-linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean-field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae. [source]


Growth rate constrain morphological divergence when driven by competition

OIKOS, Issue 1 2006
Jens Olsson
Resource competition has been hypothesized to be important in driving divergence by natural selection. The effect of competition on morphological divergence and plasticity has however rarely been investigated. Since low growth rates might constrain morphological modulation and individual growth rates usually are negatively related to the intensity of competition, there might be a connection between competition, growth rate and morphological divergence. We performed an aquarium experiment with young-of-the-year Eurasian perch (Perca fluviatilis L.) to investigate how individual growth rate affected morphological plasticity induced by contrasting habitat treatments. Furthermore, in a field study of 10 lakes we also related the degree of morphological differentiation between habitats to the intraspecific competitior biomass. In the aquarium experiment we found that morphological plasticity was growth rate dependent in that morphological differentiation between the habitat treatments was confined to high individual growth rates. In the field study we found that morphological differentiation between habitats decreased with increasing intraspecific competitior biomass. Since plasticity is hypothesized to be important in divergence and intraspecific biomass could serve as a proxy for the level of competition, we suggest that our results indicate that morphological divergence might be constrained during periods of intense intraspecific competition due to low growth rates. A possible scenario is that at low growth rates all energy available is used for metabolic maintenance and no surplus energy is therefore available for morphological modulation. [source]


Rhesus macaque milk: Magnitude, sources, and consequences of individual variation over lactation

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2009
Katherine Hinde
Abstract Lactation represents the greatest postnatal energetic expenditure for mammalian mothers, and a mother's ability to sustain the costs of lactation is influenced by her physical condition. Mothers in good condition may produce infants who weigh more, grow faster, and are more likely to survive than the infants of mothers in poor condition. These effects may be partially mediated through the quantity and quality of milk that mothers produce during lactation. However, we know relatively little about the relationships between maternal condition, milk composition, milk yield, and infant outcomes. Here, we present the first systematic investigation of the magnitude, sources, and consequences of individual variation in milk for an Old World monkey. Rhesus macaques produce dilute milk typical of the primate order, but there was substantial variation among mothers in the composition and amount of milk they produced and thus in the milk energy available to infants. Relative milk yield value (MYV), the grams of milk obtained by mammary evacuation after 3.5,4 h of maternal-infant separation, increased with maternal parity and was positively associated with infant weight. Both milk gross energy (GE) and MYV increased during lactation as infants aged. There was, however, a trade-off; those mothers with greater increases in GE had smaller increases in MYV, and their infants grew more slowly. These results from a well-fed captive population demonstrate that differences between mothers can have important implications for milk synthesis and infant outcome. Am J Phys Anthropol 2009. © 2008 Wiley-Liss, Inc. [source]


Late Holocene dispersal and accumulation of terrigenous sediment on Poverty Shelf, New Zealand

BASIN RESEARCH, Issue 2 2009
A. J. Kettner
ABSTRACT We use coupled numerical models (HydroTrend and SedFlux) to investigate the dispersal and accumulation of sediment on Poverty Shelf, North Island, New Zealand, during the past 3 kyr. In this timeframe, we estimate that the Waipaoa River system delivered ,10 Gt of sediment to Poverty Shelf, 5,10% of which was transported to the outer shelf and continental slope. The domain of the two-dimensional model (SedFlux) is representative of a 30 km traverse across the shelf. Comparing the model output with seismic reflection data and a core obtained from the middle shelf shows that, without extensively modifying the governing equations or imposing unrealistic conditions on the model domain, it is possible to replicate the geometry, grain size and accumulation rate of the late Holocene mud deposit. The replicate depositional record responds to naturally and anthropogenically induced vegetation disturbance, as well as to storms forced by long-period climatic events simulated entirely within the model domain. The model output also suggests that long-term fluctuations in the amount and caliber of river sediment discharge, promoted by wholesale changes in the catchment environment, may be translated directly to the shelf depositional record, whereas short-term fluctuations conditioned by event magnitude and frequency are not. Thus on Poverty Shelf, as well as in depocenters on other active continental margins which retain a much smaller proportion of the terrigeneous sediment delivered to them, flood-generated event beds are not commonplace features in the high-resolution sedimentary record. This is because the shelf sedimentary record is influenced more by the energy available to the coastal ocean which helps keep the sediment in suspension and facilitates its dispersal, than by basin hydrometeorology which determines the turbidity and velocity of the river plume. [source]


Palms Use a Bluffing Strategy to Avoid Seed Predation by Rats in Brazil

BIOTROPICA, Issue 2 2010
Constanēa De Sampaio e Paiva Camilo-Alves
ABSTRACT The goal of this study was to ascertain why the production of variable seediness is advantageous for Attalea phalerata palms. Our hypothesis was that variation reduces seed predation by the spiny rats Thrichomys pachyurus and Clyomys laticeps. Although there is a positive correlation between endocarp size and number of seeds, endocarps sometimes contain more or fewer seeds than expected; palms bluff about the number of seed per endocarp. Therefore, rats do not know how many seeds an endocarp contains. To model rats' predating behavior, we applied Charnov's Marginal Value Theorem. The model shows that rats attack endocarps only when the energy gain is higher than the energy available in the habitat. Hence, it is not advantageous to eat all the seeds inside an endocarp. This explains why 45 percent of forest endocarps and 35 percent of savanna endocarps were still viable after predation. We then applied the model to two simulated endocarp populations with less variability in the number of seeds per endocarp size and determined that viable diaspores after predation were reduced to 15 percent. With less variability, palms cannot bluff about the number of seeds inside endocarps and predators can predict accurately how many seeds they should try to eat. Uncertainty about the number of seeds diminished predation but gave selective advantage to multiseeded fruits. Therefore, the bluffing strategy would be evolutionarily stable only if it were counterbalanced by other forces. Otherwise, predators would win the bluffing game. Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp. [source]