Energy Approach (energy + approach)

Distribution by Scientific Domains


Selected Abstracts


A fictitious energy approach for shape optimization

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2010
M. Scherer
Abstract This paper deals with shape optimization of continuous structures. As in early works on shape optimization, coordinates of boundary nodes of the FE-domain are directly chosen as design variables. Convergence problems and problems with jagged shapes are eliminated by a new regularization technique: an artificial inequality constraint added to the optimization problem limits a fictitious total strain energy that measures the shape change of the design with respect to a reference design. The energy constraint defines a feasible design space whose size can be varied by one parameter, the upper energy limit. By construction, the proposed regularization is applicable to a wide range of problems; although in this paper, the application is restricted to linear elastostatic problems. Copyright © 2009 John Wiley & Sons, Ltd. [source]


An energy approach to space,time Galerkin BEM for wave propagation problems

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 9 2009
A. Aimi
Abstract In this paper we consider Dirichlet or Neumann wave propagation problems reformulated in terms of boundary integral equations with retarded potential. Starting from a natural energy identity, a space,time weak formulation for 1D integral problems is briefly introduced, and continuity and coerciveness properties of the related bilinear form are proved. Then, a theoretical analysis of an extension of the introduced formulation for 2D problems is proposed, pointing out the novelty with respect to existing literature results. At last, various numerical simulations will be presented and discussed, showing unconditional stability of the space,time Galerkin boundary element method applied to the energetic weak problem. Copyright © 2009 John Wiley & Sons, Ltd. [source]


A friction energy approach to quantifying lubrication under fretting sliding

LUBRICATION SCIENCE, Issue 2 2010
T. Kolodziejczyk
Abstract The problem of a proper lubrication under low-speed small oscillatory movement can be a decisive factor for the reliability of various components. There is a need to characterise the lubricious behaviour of the interface under oil-bath fretting wear conditions for ball bearing applications. Fast and reliable methods to quantify this behaviour for broad range of mechanical conditions are proposed and validated. Pure sliding reciprocation induces mixed lubrication mode. It was found that transient film profiles depend on the non-Newtonian response of the oils and the type of motion. Running-in period has a crucial importance for the tribofilm formation, and is a result of the interplay of the oil-sliding surfaces interface and is directly connected with the total energy dissipated from the contact region. The stability of structured tribofilm in steady-state period relies on the balance between the competitive processes: replenishment of the oil to the contact and ejection of the oil pending the oscillatory movement. The phenomenon of starvation was observed when the system was moved away from dynamical equilibrium and the growth of the dissipated energy was spotted. A proposed methodology provides the evaluation of the lubrication properties of the oil in a quantitative way. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Interlayer coupling in magnetic superlattices with electron density inhomogeneities

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2004
W. Gruhn
Abstract We discuss the influence of spatial inhomogeneities of the free electron density on the magnetic interaction between magnetic layers of the superlattice, mediated across nonmagnetic, metallic spacer. Using the modified total energy approach, we prove that the TM or RE superlattices the additional scattering of free electrons on magnetic ion multipole moment increases the ferroquadrupolar biquadratic coupling between magnetic layers. It is shown also that the nonuniform free electron density generates contribution to the interlayer coupling being of the Dzialoshinsky-Moriya type. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]