Energetic Parameters (energetic + parameter)

Distribution by Scientific Domains


Selected Abstracts


Kinetics and mechanism for the H-for-X exchange process in the H + C6H5X reactions: A computational study

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 11 2001
I. V. Tokmakov
The addition of H atoms to benzene and toluene and subsequent transformations were investigated using high level ab initio and density functional theory methods. Molecular structures and vibrational frequencies calculated at the B3LYP/6-311++G(d,p) level of theory were used in combination with adjusted G2M energetic parameters for RRKM rate constant calculations. Standard heats of formation for cyclohexadienyl and cyclohexadienyl, 6-methyl radicals calculated through isodesmic reactions amounted to 49.5 ± 2 and 42.9 ± 3 kcal/mol, respectively. Rate constants for various elementary reactions involved in the H-for-X exchange (X = D, CH3) were calculated and closely correlated with the available experimental kinetic data. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 633,653, 2001 [source]


Quantitative structure,reactivity relationship studies on the catalyzed Michael addition reactions

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 6 2009
Bahram Hemmateenejad
Abstract Quantitative structure,reactivity relationship (QSRR) can be considered as a variant of quantitative structure,property relationship (QSPR) studies, where the chemical reactivity of reactants or catalysts in a specified chemical reaction is related to chemical structure. In this manner, the Michael addition of some different substrates using different catalysts (SDS, silica gel, and ZrOCl2) was subjected to structure,reactivity relationship, quantitatively. Multiple linear regression (MLR) and partial least square (PLS) were used to perform the QSRR analysis. The resulted models for different catalyzed reactions showed that the catalysts probably act in different mechanisms since the models obtained for the catalysts included different parameters from substrate and enones. Overall, it was found that the reactivity in Michael addition reactions is controlled by coulombic (dipole and charge) interactions as well as the orbital energetic parameters. In the presence of different catalysts, the relative importance of these parameters is changed and hence the catalytic activity is changed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Hydrogen bonds assisted by ,-electron delocalization , the influence of external intermolecular interactions on dimer of formic acid

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 7-8 2008
awomir J. Grabowski
Abstract MP2 and DFT calculations with the use of 6-311++G(d,p) basis set were carried out to study formic acid dimer as well as this species interacting with additional Lewis acids such as HF, Li+ and Na+. These Lewis acids were positioned near carbonyl or hydroxyl oxygen atoms and their influence on geometrical and other parameters of formic acid dimer was analysed. Additionally the ,quantum theory of atoms in molecules' (QTAIM) was applied as well as the ,natural bond orbitals' (NBO) method. Numerous correlations between geometrical, QTAIM and energetic parameters were found. It was found that ,-electron delocalization is not always connected with the enhancement of H-bond strength. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2010
Hilal Taymaz-Nikerel
Abstract Metabolic network models describing growth of Escherichia coli on glucose, glycerol and acetate were derived from a genome scale model of E. coli. One of the uncertainties in the metabolic networks is the exact stoichiometry of energy generating and consuming processes. Accurate estimation of biomass and product yields requires correct information on the ATP stoichiometry. The unknown ATP stoichiometry parameters of the constructed E. coli network were estimated from experimental data of eight different aerobic chemostat experiments carried out with E. coli MG1655, grown at different dilution rates (0.025, 0.05, 0.1, and 0.3,h,1) and on different carbon substrates (glucose, glycerol, and acetate). Proper estimation of the ATP stoichiometry requires proper information on the biomass composition of the organism as well as accurate assessment of net conversion rates under well-defined conditions. For this purpose a growth rate dependent biomass composition was derived, based on measurements and literature data. After incorporation of the growth rate dependent biomass composition in a metabolic network model, an effective P/O ratio of 1.49,±,0.26,mol of ATP/mol of O, KX (growth dependent maintenance) of 0.46,±,0.27,mol of ATP/C-mol of biomass and mATP (growth independent maintenance) of 0.075,±,0.015,mol of ATP/C-mol of biomass/h were estimated using a newly developed Comprehensive Data Reconciliation (CDR) method, assuming that the three energetic parameters were independent of the growth rate and the used substrate. The resulting metabolic network model only requires the specific rate of growth, µ, as an input in order to accurately predict all other fluxes and yields. Biotechnol. Bioeng. 2010;107: 369,381. © 2010 Wiley Periodicals, Inc. [source]


On-line adaptive metabolic flux analysis: Application to PHB production by mixed microbial cultures

BIOTECHNOLOGY PROGRESS, Issue 2 2009
Joćo Dias
Abstract In this work, an algorithm for on-line adaptive metabolic flux analysis (MFA) is proposed and applied to polyhydroxybutyrate (PHB) production by mixed microbial cultures (MMC). In this process, population dynamics constitutes an important source of perturbation to MFA calculations because some stoichiometric and energetic parameters of the underlying metabolic network are continuously changing over time. The proposed algorithm is based on the application of the observer-based estimator (OBE) to the central MFA equation, whereby the role of the OBE is to force the accumulation of intracellular metabolites to converge to zero by adjusting the values of unknown network parameters. The algorithm was implemented in a reactor equipped with on-line analyses of dissolved oxygen and carbon dioxide through respirometric and titrimetric measurements. The oxygen and carbon dioxide fluxes were measured directly, whereas acetate, PHB, and sludge production fluxes were estimated indirectly using a projection of latent structures model calibrated a priori with off-line measurements. The algorithm was implemented in a way that the network parameters associated with biosynthesis were adjusted on-line. The algorithm proofed to converge exponentially with the steady state error always below 1 mmol/L. The estimated fluxes passed the consistency index test for experimental error variances as low as 1%. The comparison of measured and estimated respiratory coefficient and of the theoretical and estimated yield of sludge on acetate further confirmed the metabolic consistency of the parameters that were estimated on-line. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]