Home About us Contact | |||
EMSA Experiments (emsa + experiment)
Selected AbstractsRANKL Treatment Releases the Negative Regulation of the Poly(ADP-Ribose) Polymerase-1 on Tcirg1 Gene Expression During Osteoclastogenesis,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2006Guillaume E Beranger Abstract The Tcirg1 gene encodes the osteoclast-specific a3 isoform of the V-ATPase a subunit. Using the mouse osteoclastic model RAW264.7 cells, we studied Tcirg1 gene expression, and we identified PARP-1 as a transcriptional repressor negatively regulated by RANKL during osteoclastogenesis. Introduction: The TCIRG1 gene encodes the a3 isoform of the V-ATPase a subunit, and mutations at this locus account for ,60% of infantile malignant osteopetrosis cases. Using RAW264.7 cells as an osteoclastic differentiation model, we undertook a transcriptional study of the mouse Tcirg1 gene focused on the 4-kb region upstream of the transcription starting point. Materials and Methods: The promoter activity of serial-deletion fragments of the Tcirg1 gene promoter was monitored throughout the RAW264.7 cell differentiation process. We next performed EMSA, UV cross-linking, affinity purification, mass spectrometry analysis, gel supershift, and siRNA transfection experiments to identify the factor(s) interacting with the promoter. Results: The ,3946/+113 region of the mouse Tcirg1 gene displayed a high basal promoter activity, which was enhanced by RANKL treatment of RAW264.7 cells. Constructs deleted up to ,1589 retained this response to RANKL. A deletion up to ,1402 induced a 3-fold enhancement of the basal activity, whereas RANKL response was not affected. EMSA experiments led us to identify within the ,1589/,1402 region, a 10-nucleotide sequence, which bound a nuclear protein present in nondifferentiated RAW264.7 cells. This interaction was lost using nuclear extracts derived from RANKL-treated cells. Affinity purification followed by mass spectrometry analysis and gel supershift assay allowed the identification of poly(ADP-ribose) polymerase-1 (PARP-1) as this transcriptional repressor, whereas Western blot experiments revealed the cleavage of the DNA-binding domain of PARP-1 on RANKL treatment. Finally, both PARP-1 depletion after siRNA transfection and RAW264.7 cell treatment by an inhibitor of PARP-1 activity induced an increase of a3 mRNA expression. Conclusions: We provide evidence that the basal transcription activity of the Tcirg1 gene is negatively regulated by the binding of PARP-1 protein to its promoter region in mouse pre-osteoclast. On RANKL treatment, PARP-1 protein is cleaved and loses its repression effect, allowing an increase of Tcirg1 gene expression that is critical for osteoclast function. [source] Altered binding of MYF-5 to FOXE1 promoter in non-syndromic and CHARGE-associated cleft palateJOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 1 2009Mario Venza Background:, Three different homozygous loss-of-function mutations of the Forkhead box E1 (FOXE1) gene have been associated with syndromic cleft palate. Here, we screened the entire promoter region to identify the variations in significant consensus motifs affecting FOXE1 transcription. Method:, Genomic DNAs of 35 cleft palate patients, 10 of whom with CHARGE association, 80 unrelated healthy people and 80 unaffected first-degree relatives were analysed by automatic sequencing. The Transcription Element Search System program was employed to identify transcription factor binding sites. The protein-DNA complexes were observed using DNA band-shift assays and oligonucleotide competition analyses. Real-time PCR was used to estimate FOXE1 expression at mRNA level. Results:, In 11 non-syndromic cleft palate patients, a novel non-coding polymorphism (C,G) in the 5,-untranslated region of FOXE1 was found. The variation fell into a putative consensus sequence for the transcription factor MYF-5 and completely impaired the ability of MYF -5 to bind to its motif, as shown by EMSA experiments. As a consequence, a significantly reduced FOXE1 mRNA expression was observed. Conclusions:, In 45% of non-syndromic cleft palate patients, a novel homozygous polymorphism that prevented the binding of MYF -5 to FOXE1 promoter and affected the FOXE1 expression was found. As recent data show the role of MYF-5 in the muscle-dependent craniofacial skeletal development and in the fusion of primary palate and secondary palate, the results reported here strongly suggest a more significant involvement of this factor in the cleft palate onset. [source] The transcription factor CREM, and cAMP regulate promoter activity of the Na,K-ATPase ,4 isoformMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 11 2006Marianna Rodova Abstract The Na,K-ATPase is an essential enzyme of the plasma membrane that plays a key role in numerous cell processes that depend on the transcellular gradients of Na+ and K+. Among the various isoforms of the catalytic subunit of the Na,K-ATPase, ,4 exhibits the most limited pattern of expression, being restricted to male germ cells. Activity of ,4 is essential for sperm function, and ,4 is upregulated during spermatogenesis. The present study addressed the transcriptional control of the human Na,K-ATPase ,4 gene, ATP1A4. We describe that a 5, untranslated region of the ATP1A4 gene (designated ,339/+480 based on the ATP1A4 transcription initiation site) has promoter activity in luciferase reporter assays. Computer analysis of this promoter region revealed consensus sites (CRE) for the cyclic AMP (cAMP) response element modulator (CREM). Accordingly, dibutyryl cAMP (db-cAMP) and ectopic expression of CREM,, a testis specific splice variant of CREM were able to activate the ATP1A4 promoter driven expression of luciferase in HEK 293 T, JEG-3 and GC-1 cells. Further characterization of the effect of db-cAMP and CREM, on deleted constructs of the ATP1A4 promoter (,339/+80, and +25/+480), and on the ,339/+480 region carrying mutations in the CRE sites showed that db-cAMP and CREM, effect required the CRE motif located 263 bp upstream the transcription initiation site. EMSA experiments confirmed the CRE sequence as a bonafide CREM, binding site. These results constitute the first demonstration of the transcriptional control of ATP1A4 gene expression by cAMP and by CREM,, a transcription factor essential for male germ cell gene expression. Mol. Reprod. Dev. 73: 1435,1447, 2006. © 2006 Wiley-Liss, Inc. [source] FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and ArabidopsisTHE PLANT JOURNAL, Issue 6 2008Miguel Ángel Moreno-Risueno Summary Accumulation of storage compounds in the embryo and endosperm of developing seeds is a highly regulated process that allows seedling growth upon germination until photosynthetic capacity is acquired. A critical regulatory element in the promoters of seed storage protein (SSP) genes from dicotyledonous species is the RY box, a target of B3-type transcription factors. However, the functionality of this motif in the transcriptional regulation of SSP genes from cereals has not been fully established. We report here the identification and molecular characterization of barley FUSCA3, a B3-type transcription factor as yet uncharacterized in monocotyledonous plants. Our results show that both the barley and Arabidopsis FUS3 genes maintain a conserved functionality for the regulation of SSP genes and anthocyanin biosynthesis in these two distantly related phylogenetic groups. Complementation of the loss-of-function mutant fus3 in Arabidopsis by the barley HvFus3 gene resulted in restored transcription from the At2S3 gene promoter and normal accumulation of anthocyanins in the seed. In barley, HvFUS3 participates in transcriptional activation of the endosperm-specific genes Hor2 and Itr1. HvFUS3, which specifically binds to RY boxes in EMSA experiments, trans -activates Hor2 and Itr1 promoters containing intact RY boxes in transient expression assays in developing endosperms. Mutations in the RY boxes abolished the HvFUS3-mediated trans -activation. HvFus3 transcripts accumulate in the endosperm and in the embryo of developing seeds, peaking at mid maturation phase. Remarkably, HvFUS3 interacts with the Opaque2-like bZIP factor BLZ2 in yeast, and this interaction is essential for full trans -activation of the seed-specific genes in planta. [source] |