Home About us Contact | |||
EMG Recordings (emg + recording)
Selected AbstractsWorkshop 5: NAAG and NAALADase: Functional Properties in the Central and Peripheral Nervous SystemJOURNAL OF NEUROCHEMISTRY, Issue 2002D. Bacich Glutamate carboxypeptidase II (GCPII, also known as N-acetylated-alpha-linked acidic dipeptidase or NAALADase) knockout (KO) mice were generated by inserting a GCPII targeting cassette containing a PGK-Neo resistance marker and stop codons in exons 1 and 2, and removal of exons 1 and 2 intron/exon boundary sequence. Embryonic stem cells were injected into C57BL6 blastocysts, and chimeric offspring born. Germline transmission was confirmed by mating the chimeras to generate heterozygous KO mice. Crossing heterozygous mice generated F2 generation mice homozygous for the null mutant, as confirmed by loss of GCPII protein. NAAG hydrolyzing activity was minimal (0.07 pmol/mg/min) in KO tissue, with normal levels (4.82 pmol/mg/min) in wild types and intermediate levels (1.73 pmol/mg/min) in heterozygotes. Preliminary neuropathy experiments showed KO mice are less affected by nerve-crush and recover faster from the damage-induced neuropathy, as indicated by EMG recording and nerve morphology. Similarly, GCPII KO mice subjected to high dose vitamin B6 displayed less severe neuropathy than wild types, as indicated by reduced sensory nerve conduction velocity and morphological deficits. Also, in a transient middle cerebral artery occlusion model, GCPII KO mice were significantly more resistant to the effects of cerebral ischemia than their wildtype littermates. Findings support GCPII involvement in stroke and in mediating chronic neuropathic conditions and suggest GCPII inhibitors may be useful in treatment of brain ischemia as well as peripheral neuropathies. [source] Effect of conditioning electrical stimuli on temporalis electromyographic activity during sleepJOURNAL OF ORAL REHABILITATION, Issue 3 2008F. JADIDI Summary, Inhibitory reflexes during voluntary contractions are well described; however, few studies have attempted to use such reflex-mechanisms to modulate electromyographic (EMG) activity in jaw-closing muscles during sleep. The aim was to apply a new intelligent biofeedback device (Grindcare®) using electrical pulses to inhibit EMG activity in the temporalis muscle during sleep. Fourteen volunteers participated who were aware of jaw-clenching activity as indicated by complaints from sleep partner, soreness or pain in the jaw-muscle upon awakening and tooth wear facets. The EMG activity was recorded from the temporalis muscle, online analysed and the frequency content determined using a signal recognition algorithm. Based on specific individual parameters for pattern recognition, an electrical square-wave pulse train, which was adjusted to a clear, but non-painful intensity (range 1,7 mA) was applied through the EMG electrodes, if jaw-clenching activity was detected. All volunteers had baseline EMG recordings for five to seven consecutive nights, followed by 3-weeks EMG recordings with the feedback turned on, 2 weeks without the feedback and finally 3 weeks with the biofeedback on. There were no session effects on the average duration of sleep hours (P = 0·626). The number of EMG episodes/hour sleep was significantly reduced during the two sessions with biofeedback (54 ± 14%; 55 ± 17%, P < 0·001) compared with baseline EMG activity and the session without biofeedback. The present study suggests that biofeedback with electrical pulses does not cause major disruption in sleep and is associated with pronounced reduction in temporalis EMG activity during sleep. [source] Validation of video versus electromyography for chewing evaluation of the elderly wearing a complete dentureJOURNAL OF ORAL REHABILITATION, Issue 8 2007E. NICOLAS summary, Chewing efficiency may affect nutritional status in the elderly. Many elderly patients are complete denture wearers, and often present cognitive problems. Those two factors make evaluation of mastication difficult with experimental methods. Analysis of video recording may be a simple way to routinely assess chewing parameters. This study aimed at validating several parameters of video evaluation versus electromyography (EMG), which is considered the ,gold standard'. The design was a prospective randomized study, carried out at the Faculty of Dentistry, University of Auvergne, Clermont-Ferrand, France. Twelve complete denture wearers chewed four model foods differing in hardness. Sessions were videotaped and EMG recordings were registered. Mastication time, number of masticatory cycles and cleaning time were recorded simultaneously by video and EMG. Two investigators independently analyzed the videos twice, in random order. Evaluation of criterion validity: a positive video/EMG correlation was found for the parameters ,chewing time' (0·89, Pearson) and ,number of masticatory cycles' (0·94, Spearman), whereas no statistical difference was found between these two EMG and video variables (t -test). Inter and intra-rater reliability gave a positive intraclass coefficient (ICC) for duration of mastication (0·86,0·98), number of masticatory cycles (0·90,0·97) and cleaning time (0·90,0·98). Discriminatory ability was studied using anova (P = 0·01): variation was significant in masticatory duration (F = 10), number of masticatory cycles (F = 10) and cleaning time (F = 4). Video may be a useful assessment tool in prosthetic rehabilitation and can be applied to help choose the type of food (solid, semi-liquid or liquid) to administer to dependent persons, particularly those suffering from dementia. [source] Non-invasive assessment of motor unit anatomy in jaw-elevator musclesJOURNAL OF ORAL REHABILITATION, Issue 10 2005T. CASTROFLORIO summary The estimation of fibre length in jaw-elevator muscles is important for modelling studies and clinical applications. The objective of this study was to identify, from multi-channel surface EMG recordings, the main innervation zone(s) of the superficial masseter and anterior temporalis muscles, and to estimate the fibre length of these muscles. Surface EMG signals were collected from 13 subjects with a 16-electrode linear array. The innervation zones of the masseter and anterior temporalis were identified and their variability intra- and inter-subject outlined. More than one main innervation zone location was identified in the masseter of all subjects and in the temporalis anterior of 12 subjects. Average estimated fibre lengths, for the right (left) side, were (mean ± SD) 27·3 ± 2·4 mm (27·0 ± 1·7 mm) and 25·9 ± 2·3 mm (26·6 ± 1·6 mm), for the superficial masseter and temporalis anterior muscle, respectively. The range of innervation zone locations was up to approximately 50% of the fibre length, both within and between subjects. Fibre length estimates well matched with published data on cadavers. It was concluded that multi-channel surface EMG provides important and reliable information on the anatomy of single motor units in jaw-elevator muscles. [source] Effects of a functional appliance on masticatory muscles of young adults suffering from muscle-related temporomandibular disordersJOURNAL OF ORAL REHABILITATION, Issue 6 2004T. Castroflorio summary, The aim of this study was to investigate the effects of an original orthodontic functional appliance [function generating bite for deep bite correction (FGB-D)] on masticatory muscle activity in subjects suffering from muscle-related temporomandibular disorders (TMD). Electromyographic (EMG) analysis was performed on 33 young adults (nine men, 24 women) to evaluate the contractile symmetry of the right and left masseter and anterior temporalis muscles. The subjects were divided into three groups: a muscle-related TMD group requiring orthodontic treatment for deep bite correction (three men, eight women) and treated with FGB-D; a muscle-related TMD group not requiring orthodontic treatment (three men, eight women) and treated with a Michigan occlusal splint; and a TMD-free group (three men, eight women) as a control group. Records were made by surface EMG of maximum voluntary teeth clenching, with and without the functional appliance or occlusal splint in place, before and after 12 months of therapy. A torque index was derived from the surface EMG recordings to estimate lateral displacement of the mandible. The results show that the FGB-D corrects the torque index and thus the lateral displacement of the mandible. [source] Sleep-related stridor due to dystonic vocal cord motion and neurogenic tachypnea/tachycardia in multiple system atrophyMOVEMENT DISORDERS, Issue 5 2007Roberto Vetrugno MD Abstract Sleep-disordered breathing and sleep-related motor phenomena are part of the clinical spectrum of multiple system atrophy (MSA). Stridor has been attributed to denervation of laryngeal muscles or instead to dystonic vocal cord motion. We studied 3 patients with nocturnal stridor in the setting of MSA. All patients underwent nocturnal videopolysomnography (VPSG) with breathing and heart rate, O2 saturation and intra-esophageal pressure recordings, and simultaneous EMG recordings of the posterior cricoarytenoid, cricothyroid, and thyroarytenoid muscles and continuous vocal cord motion evaluation by means of fiberoptic laryngoscopy. VPSG/EMG and fiberoptic laryngoscopy documented normal vocal cord motion without denervation during wake and stridor only during sleep when hyperactivation of vocal cords adductors appeared in the absence of significant O2 desaturation. All patients had tachycardia and tachypnea and paradoxical breathing during sleep, erratic intercostalis and diaphragmatic EMG activity and Rem sleep behavior disorder. One of the patients had restless legs syndrome with periodic limb movement during sleep and excessive fragmentary hypnic myoclonus. In conclusion, our patients with MSA had nocturnal stridor due to sleep-related laryngeal dystonia. Stridor was associated with other abnormal sleep-related respiratory and motor disorders, suggesting an impairment of homeostatic brainstem integration in MSA. © 2007 Movement Disorder Society [source] Spontaneously changing muscular activation pattern in patients with cervical dystoniaMOVEMENT DISORDERS, Issue 6 2001A. Münchau MD Abstract The objective of this study was to determine stability of the neck muscle activation pattern in a given dystonic head position in patients with cervical dystonia (CD). We assessed 26 patients with CD and botulinum toxin (BT) treatment failure before surgical denervation. None of them had received BT injections for at least 4 months. To relate dystonic head position to underlying neck muscle activity, we used synchronised video and poly-electromyographic (EMG) recording over a period of 10 minutes. The muscle activation pattern during constant ("stable") maximal dystonic excursions was analysed. EMG data of nine patients was excluded from the analysis, as these patients had a constantly changing head position or marked head tremor. In the remaining 17 patients, who had a fairly stable dystonic position, muscular activation patterns during the recording spontaneously changed in nine (Group A) while in eight it remained stable (Group B). There was no significant difference in demographic variables between the two groups other than a male predominance in Group A. However, the retrospectively determined initial response to BT treatment (before BT treatment failure had occurred) was significantly worse in Group A as compared with Group B. Neck muscle activation patterns can spontaneously change in CD patients despite constant dystonic head position, implying an inherent variability of the underlying central motor program in some patients. This should be considered when BT treatment response is unsatisfactory, and should also be taken into account when interpreting results of EMG recordings of neck muscles in these patients. © 2001 Movement Disorder Society. [source] Optimal signal bandwidth for the recording of surface EMG activity of facial, jaw, oral, and neck musclesPSYCHOPHYSIOLOGY, Issue 1 2001A. van Boxtel Spontaneous pericranial electromyographic (EMG) activity is generally small and is contaminated by strong low-frequency artifacts. High-pass filtering should suppress artifacts but affect EMG signal power only minimally. In 24 subjects who performed a warned simple reaction time task, the optimal high-pass cut-off frequency was examined for nine different pericranial muscles. From four experimental conditions (visual and auditory reaction signals combined with hand and foot responses), 1-min EMG recordings were selected (bandwidth: 0.4,512 Hz) and divided into 60 1-s data segments. These segments were high-pass filtered, the ,3-dB cut-off frequency varying from 5 to 90 Hz, and subjected to power spectral analysis. Optimal high-pass filter frequencies were determined for the mean power spectra based on visual estimation or comparison with a theoretical spectrum of the artifact-free EMG signal. The optimal frequencies for the different muscles varied between 15 and 25 Hz and were not influenced by stimulus or response modality. For all muscles, a low-pass filter frequency between 400 and 500 Hz was appropriate. [source] Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge ratesTHE JOURNAL OF PHYSIOLOGY, Issue 24 2009Francesco Negro The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 × 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 ± 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 ± 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 ± 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 ± 7.8%). The correlation between FCC and the force signal increased up to 71.8 ± 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R2 range = 0.14,0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R2= 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 ± 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions. [source] |