Home About us Contact | |||
Emerging Studies (emerging + studies)
Selected AbstractsPolymersomes as viral capsid mimicsDRUG DEVELOPMENT RESEARCH, Issue 1 2006Fariyal Ahmed Abstract Polymersomes are self-assembled polymer shells composed of block copolymer amphiphiles. These synthetic amphiphiles have a similar amphiphilicity to lipids, but they have much larger molecular weights and so for this reason, plus many others reviewed here, comparisons of polymersomes to viral capsids composed of large polypeptide chains seem increasingly more appropriate. The wide range of polymers being used to make polymersomes is summarized together with descriptions of physical properties such as stability and permeability. Emerging studies of in vivo stealthiness and programmed disassembly for controlled release are also elaborated here together with a summary of targeting in vitro. Comparisons of polymersomes to viral capsids are shown to encompass many aspects of current designs. Drug Dev. Res. 67:4,14, 2006. © 2006 Wiley-Liss, Inc. [source] Hypothalamic sensing of circulating lactate regulates glucose productionJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 11-12 2009Andrea Kokorovic Abstract Emerging studies indicate that hypothalamic hormonal signalling pathways and nutrient metabolism regulate glucose homeostasis in rodents. Although hypothalamic lactate-sensing mechanisms have been described to lower glucose production (GP), it is currently unknown whether the hypothalamus senses lactate in the blood circulation to regulate GP and maintain glucose homeostasis in vivo. To examine whether hypothalamic sensing of circulating lactate is required to regulate GP, we infused intravenous (i.v.) lactate in the absence or presence of inhibition of central/hypothalamic lactate-sensing mechanisms in normal rodents. Inhibition of central/hypothalamic lactate-sensing mechanisms was achieved by three independent approaches. Tracer-dilution methodology in combination with the pancreatic clamp technique was used to assess the effect of i.v. and central/hypothalamic administrations on glucose metabolism in vivo. In the presence of physiologically relevant increases in the levels of plasma lactate, inhibition of central lactate-sensing mechanisms by lactate dehydrogenase inhibitor oxamate (OXA) or ATP-sensitive potassium channels blocker glibenclamide increased GP. Furthermore, direct administration of OXA into the mediobasal hypothalamus increased GP in the presence of similar elevation of circulating lactate. Together, these data indicate that hypothalamic sensing of circulating lactate regulates GP and is required to maintain glucose homeostasis. [source] Developmental control via GATA factor interplay at chromatin domainsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2005Emery H. Bresnick Despite the extraordinary task of packaging mammalian DNA within the constraints of a cell nucleus, individual genes assemble into cell type-specific chromatin structures with high fidelity. This chromatin architecture is a crucial determinant of gene expression signatures that distinguish specific cell types. Whereas extensive progress has been made on defining biochemical and molecular mechanisms of chromatin modification and remodeling, many questions remain unanswered about how cell type-specific chromatin domains assemble and are regulated. This mini-review will discuss emerging studies on how interplay among members of the GATA family of transcription factors establishes and regulates chromatin domains. Dissecting mechanisms underlying the function of hematopoietic GATA factors has revealed fundamental insights into the control of blood cell development from hematopoietic stem cells and the etiology of pathological states in which hematopoiesis is perturbed. © 2005 Wiley-Liss, Inc. [source] Assessing optic nerve pathology with diffusion MRI: from mouse to humanNMR IN BIOMEDICINE, Issue 9 2008Junqian Xu Abstract The optic nerve is often affected in patients with glaucoma and multiple sclerosis. Conventional MRI can detect nerve damage, but it does not accurately assess the underlying pathologies. Mean diffusivity and diffusion anisotropy indices derived from diffusion tensor imaging have been shown to be sensitive to a variety of central nervous system white matter pathologies. Despite being sensitive, the lack of specificity limits the ability of these measures to differentiate the underlying pathology. Directional (axial and radial) diffusivities, measuring water diffusion parallel and perpendicular to the axonal tracts, have been shown to be specific to axonal and myelin damage in mouse models of optic nerve injury, including retinal ischemia and experimental autoimmune encephalomyelitis. The progression of Wallerian degeneration has also been detected using directional diffusivities after retinal ischemia. However, translating these findings to human optic nerve is technically challenging. The current status of diffusion MRI of human optic nerve, including imaging sequences and protocols, is summarized herein. Despite the lack of a consensus among different groups on the optimal sequence or protocol, increased mean diffusivity and decreased diffusion anisotropy have been observed in injured optic nerve from patients with chronic optic neuritis. From different mouse models of optic nerve injuries to the emerging studies on patients with optic neuritis, directional diffusivities show great potential to be specific biomarkers for axonal and myelin injury. Copyright © 2008 John Wiley & Sons, Ltd. [source] |