Embryonic Tissues (embryonic + tissue)

Distribution by Scientific Domains


Selected Abstracts


Tails of the unexpected: palatal medial edge epithelium is no more specialized than other embryonic epithelium

ORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 1 2007
NL Brown
Structured Abstract Authors ,, Brown NL, Sandy JR Objective ,, To determine whether palatal medial edge epithelium (MEE) is specialized in its ability to disappear compared with other embryonic, non-palatal, epithelium. Subjects ,, Embryonic tissues harvested from CD1 mice. Methods ,, Organs were cultured in 2 ml of DMEM/F12 supplemented with 300 ,g/ml l-glutamine and 1% penicillin/streptomycin. Organs were cultured under various conditions including opposing other organs and opposing an inert material for a period of 6 days. Tissues were then processed for histological examination. Results ,, MEE of shelves opposing nothing persisted, whereas MEE of shelves contacting another shelf disappeared. When a tail was placed against a palatal shelf the MEE disappeared, as did the epithelium from the tail, resulting in fusion between the shelf and tail. Furthermore, when palatal shelves were placed against an inert material the MEE disappeared, suggesting pressure alone is a sufficient stimulus to initiate disappearance of the MEE, and that the interaction between the two palatal shelves is not a prerequisite for the disappearance of MEE. Moreover, when two embryonic tails were cultured in close apposition they fused, as did paired limbs. Non-palatal epithelia also disappeared after contact with inert materials. Epithelial disappearance began within 24 h of contact, but there was an age limit. Conclusion ,, These findings suggest that embryonic epithelium from non-specific sites around the body has the ability to disappear with mechanical contact resulting in fusion of tissues. MEE may not be as specialized as once thought. [source]


Xenopus Lefty requires proprotein cleavage but not N-linked glycosylation to inhibit nodal signaling

DEVELOPMENTAL DYNAMICS, Issue 8 2007
Joby J. Westmoreland
Abstract The Nodal and Nodal-related morphogens are utilized for the specification of distinct cellular identity throughout development by activating discrete target genes in a concentration-dependant manner. Lefty is a principal extracellular antagonist involved in the spatiotemporal regulation of the Nodal morphogen gradient during mesendoderm induction. The Xenopus Lefty proprotein contains a single N-linked glycosylation motif in the mature domain and two potential cleavage sites that would be expected to produce long (XleftyL) and short (XleftyS) isoforms. Here we demonstrate that both isoforms were secreted from Xenopus oocytes, but that XleftyL is the only isoform detected when embryonic tissue was analyzed. In mesoderm induction assays, XleftyL is the functional blocker of Xnr signaling. When secreted from oocytes, vertebrate Lefty molecules were N-linked glycosylated. However, glycan addition was not required to inhibit Xnr signaling and did not influence its movement through the extracellular space. These findings demonstrate that Lefty molecules undergo post-translational modifications and that some of these modifications are required for the Nodal inhibitory function. Developmental Dynamics 236:2050,2061, 2007. © 2007 Wiley-Liss, Inc. [source]


Trichloroethylene effects on gene expression during cardiac development

BIRTH DEFECTS RESEARCH, Issue 7 2003
J. Michael Collier
Abstract BACKGROUND Halogenated hydrocarbon exposure is associated with changes in gene expression in adult and embryonic tissue. Our study was undertaken to identify differentially expressed mRNA transcripts in embryonic hearts from Sprague-Dawley rats exposed to trichloroethylene (TCE) or potential bio-transformation products dichloroethylene (DCE) and trichloroacetic acid (TCAA). METHODS cDNA subtractive hybridization was used to selectively amplify expressed mRNA obtained from control or halogenated hydrocarbon exposed rat embryos. The doses used were 1100 and 110 ppm (8300 and 830 ,M) TCE, 110 and 11 ppm (1100 and 110 ,M) DCE, and 27.3 and 2.75 mg/ml (100 and 10 mM) TCAA. Control animals were given distilled drinking water throughout the period of experiments. RESULTS Sequencing of over 100 clones derived from halogenated hydrocarbon exposed groups resulted in identification of numerous differentially regulated gene sequences. Up-regulated transcripts identified include genes associated with stress response (Hsp 70) and homeostasis (several ribosomal proteins). Down-regulated transcripts include extracellular matrix components (GPI-p137 and vimentin) and Ca2+ responsive proteins (Serca-2 Ca2+ -ATPase and ,-catenin). Two possible markers for fetal TCE exposure were identified: Serca-2 Ca2+ -ATPase and GPI-p137, a GPI-linked protein of unknown function. Differential regulation of expression of both markers by TCE was confirmed by dot blot analysis and semi-quantitative RT-PCR with levels of TCE exposure between 100 and 250 ppb (0.76 and 1.9 ,M) sufficient to decrease expression. CONCLUSIONS Sequences down-regulated with TCE exposure appear to be those associated with cellular housekeeping, cell adhesion, and developmental processes, while TCE exposure up-regulates expression of numerous stress response and homeostatic genes. Birth Defects Research (Part A) 67488,495, 2003. © 2003 Wiley-Liss, Inc. [source]


Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis

DEVELOPMENTAL DYNAMICS, Issue 3 2008
Danielle L. Lavery
Abstract Here, we report the localization within embryonic tissues of xWnt6 protein; together with the temporal and spatial expression of Xenopus laevis Wnt6 mRNA. Wnt6 expression in Xenopus embryos is low until later stages of neurulation, when it is predominantly found in the surface ectoderm. Wnt6 expression increases during early organogenesis in the epidermis overlaying several developing organs, including the eye, heart, and pronephros. At later stages of development, Wnt6 mRNA and protein generally localize in epithelial tissues and specifically within the epithelial tissues of these developing organs. Wnt6 localization correlates closely with sites of both epithelial to mesenchymal transformations and mesenchymal to epithelial transformations. Xenopus Wnt6 sequence and its expression pattern are highly conserved with other vertebrates. Xenopus embryos, therefore, provide an excellent model system for investigating the function of vertebrate Wnt6 in organ development and regulation of tissue architecture. Developmental Dynamics 237:768,779, 2008. © 2008 Wiley-Liss, Inc. [source]


Regulation of the Neurofibromatosis 2 gene promoter expression during embryonic development

DEVELOPMENTAL DYNAMICS, Issue 10 2006
Elena M. Akhmametyeva
Abstract Mutations in the Neurofibromatosis 2 (NF2) gene are associated with predisposition to vestibular schwannomas, spinal schwannomas, meningiomas, and ependymomas. Presently, how NF2 is expressed during embryonic development and in the tissues affected by neurofibromatosis type 2 (NF2) has not been well defined. To examine NF2 expression in vivo, we generated transgenic mice carrying a 2.4-kb NF2 promoter driving ,-galactosidase (,-gal) with a nuclear localization signal. Whole-mount embryo staining revealed that the NF2 promoter directed ,-gal expression as early as embryonic day E5.5. Strong expression was detected at E6.5 in the embryonic ectoderm containing many mitotic cells. ,-gal staining was also found in parts of embryonic endoderm and mesoderm. The ,-gal staining pattern in the embryonic tissues was corroborated by in situ hybridization analysis of endogenous Nf2 RNA expression. Importantly, we observed strong NF2 promoter activity in the developing brain and in sites containing migrating cells including the neural tube closure, branchial arches, dorsal aorta, and paraaortic splanchnopleura. Furthermore, we noted a transient change of NF2 promoter activity during neural crest cell migration. While little ,-gal activity was detected in premigratory neural crest cells at the dorsal ridge region of the neural fold, significant activity was seen in the neural crest cells already migrating away from the dorsal neural tube. In addition, we detected considerable NF2 promoter activity in various NF2-affected tissues such as acoustic ganglion, trigeminal ganglion, spinal ganglia, optic chiasma, the ependymal cell-containing tela choroidea, and the pigmented epithelium of the retina. The NF2 promoter expression pattern during embryogenesis suggests a specific regulation of the NF2 gene during neural crest cell migration and further supports the role of merlin in cell adhesion, motility, and proliferation during development. Developmental Dynamics 235:2771,2785, 2006. © 2006 Wiley-Liss, Inc. [source]


Bacterial challenge stimulates innate immune responses in extra-embryonic tissues of tobacco hornworm eggs

INSECT MOLECULAR BIOLOGY, Issue 1 2004
M. J. Gorman
Abstract Innate immunity protects juvenile and adult vertebrates and invertebrates against potential pathogens; however, it is unknown when developing embryos become immune competent and just how they are guarded from infection. To address these questions, we studied the effect of immune challenge on early stage eggs of the tobacco hornworm, Manduca sexta. We detected many immune-related proteins and mRNAs in naive eggs. Upon immune challenge, antimicrobial protein genes were up-regulated, and antibacterial activity increased. Antimicrobial protein mRNAs and lysozyme were present in the extra-embryonic tissues of immune-challenged eggs; in addition, melanization in response to bacteria occurred in the yolk but not embryonic tissues. We conclude that the extra-embryonic tissues of early stage M. sexta eggs are immune competent and likely protect the developing embryo from infection. We suggest that innate immune responses of extra-embryonic tissues may be a common mechanism for protecting early embryos. [source]


Origin matters: Differences in embryonic tissue origin and Wnt signaling determine the osteogenic potential and healing capacity of frontal and parietal calvarial bones

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2010
Natalina Quarto
Abstract Calvarial bones arise from two embryonic tissues, namely, the neural crest and the mesoderm. In this study we have addressed the important question of whether disparate embryonic tissue origins impart variable osteogenic potential and regenerative capacity to calvarial bones, as well as what the underlying molecular mechanism(s). Thus, by performing in vitro and in vivo studies, we have investigated whether differences exist between neural crest,derived frontal and paraxial mesodermal,derived parietal bone. Of interest, our data indicate that calvarial bone osteoblasts of neural crest origin have superior potential for osteogenic differentiation. Furthermore, neural crest,derived frontal bone displays a superior capacity to undergo osseous healing compared with calvarial bone of paraxial mesoderm origin. Our study identified both in vitro and in vivo enhanced endogenous canonical Wnt signaling in frontal bone compared with parietal bone. In addition, we demonstrate that constitutive activation of canonical Wnt signaling in paraxial mesodermal,derived parietal osteoblasts mimics the osteogenic potential of frontal osteoblasts, whereas knockdown of canonical Wnt signaling dramatically impairs the greater osteogenic potential of neural crest,derived frontal osteoblasts. Moreover, fibroblast growth factor 2 (FGF-2) treatment induces phosphorylation of GSK-3, and increases the nuclear levels of ,-catenin in osteoblasts, suggesting that enhanced activation of Wnt signaling might be mediated by FGF. Taken together, our data provide compelling evidence that indeed embryonic tissue origin makes a difference and that active canonical Wnt signaling plays a major role in contributing to the superior intrinsic osteogenic potential and tissue regeneration observed in neural crest,derived frontal bone. © 2010 American Society for Bone and Mineral Research [source]


Evidences of a role for eukaryotic translation initiation factor 5A (eIF5A) in mouse embryogenesis and cell differentiation

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010
Lucas T. Parreiras-e-Silva
Eukaryotic translation initiation factor 5A (eIF5A) has a unique character: the presence of an unusual amino acid, hypusine, which is formed by post-translational modifications. Even before the identification of hypusination in eIF5A, the correlation between hypusine formation and protein synthesis, shifting cell proliferation rates, had already been observed. Embryogenesis is a complex process in which cellular proliferation and differentiation are intense. In spite of the fact that many studies have described possible functions for eIF5A, its precise role is under investigation, and to date nothing has been reported about its participation in embryonic development. In this study we show that eIF5A is expressed at all mouse embryonic post-implantation stages with increase in eIF5A mRNA and protein expression levels between embryonic days E10.5 and E13.5. Immunohistochemistry revealed the ubiquitous presence of eIF5A in embryonic tissues and organs at E13.5 day. Interestingly, stronger immunoreactivity to eIF5A was observed in the stomodeum, liver, ectoderm, heart, and eye, and the central nervous system; regions which are known to undergo active differentiation at this stage, suggesting a role of eIF5A in differentiation events. Expression analyses of MyoD, a myogenic transcription factor, revealed a significantly higher expression from day E12.5 on, both at the mRNA and the protein levels suggesting a possible correlation to eIF5A. Accordingly, we next evidenced that inhibiting eIF5A hypusination in mouse myoblast C2C12 cells impairs their differentiation into myotubes and decreases MyoD transcript levels. Those results point to a new functional role for eIF5A, relating it to embryogenesis, development, and cell differentiation. J. Cell. Physiol. 225: 500,505, 2010. © 2010 Wiley-Liss, Inc. [source]


The effect of elevated oocyte triiodothyronine content on development of rainbow trout embryos and expression of mRNA encoding for thyroid hormone receptors

JOURNAL OF FISH BIOLOGY, Issue 1 2004
J. C. Raine
The ability of developing rainbow trout Oncorhynchus mykiss embryos to compensate for elevated oocyte triiodothyronine (T3) content and whether elevation of oocyte T3 content within a physiologically meaningful range affects growth rates of the embryo or the expression of genes encoding for thyroid hormone receptors ,(TR,) and ,(TR,) were examined. Oocytes were immersed in ovarian fluid alone (control) or T3 -enriched ovarian fluid prior to fertilization and water hardening, to induce a dose-dependant increase in oocyte T3 content of c. 3 (control), c. 30 (LT3) or c. 110 ng egg,1(HT3). To examine the interaction of embryo somatic growth with altered thyroid state more effectively, the embryos were reared at two ambient temperatures (8·5 and 5·5°C ) to induce different growth rates. A significant decline in whole embryo T3 content was measured in the T3 -treatment groups reared at both water temperatures by 3 weeks post-fertilization (dpf), and may have reflected the action of outer ring monodeiodinase, which was present in microsomes prepared from embryos 23 dpf. Whole embryo T3 levels in the HT3 group, however, remained higher than controls until phase 2 of development [the onset of endogenous thyroid hormone (TH) release]. This suggested that the embryos exerted some control over their response to exogenous TH, but that there was a limit to the level of control exerted by the embryonic tissues. Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed the presence of mRNA encoding for the two TR isoforms as early as 26 dpf, and quantitative real-time RT-PCR (qPCR) was used to examine the effect of elevated oocyte T3 content on the expression of these TR genes in embryos raised at 8·5 and 5·5° C, and sampled at similar developmental stages prior to the onset of embryonic TH synthesis, to ensure that the oocyte T3 was the only source of TH exposure to the embryo. There was a suppression of the TR, gene expression in the control 5·5° C group relative to the control 8·5° C group. In addition, both TR, and TR, mRNA accumulation was lower, relative to the controls, in the LT3 treatment group reared at 8·5° C suggesting a suppressive effect of the lower level of T3 treatment on the TR gene expression. Conversely, there were no differences from controls in the HT3 treatment group, possibly indicating that this level of exposure overrides the down-regulating capacity of the embryo. Similar patterns were seen for TR, and TR, mRNA accumulation in embryos reared at 5·5° C, but because of the temperature suppressed level of TR, mRNA in the controls, significant affects of the LT3 treatment were only found for TR,. There were no measurable effects of T3 treatment on oocyte fertility or embryo somatic growth for either temperature treatment group, nor was somatic growth hormone content (measured only in the 8·5° C treatment group) apparently related to in ovo T3 levels. The results suggest that altered in ovo T3 levels, within the ranges used here, do not induce marked affects on embryo development, probably because of the ability of the embryo to maintain the integrity of its TH milieu. [source]


A comparison between virus replication and abiotic stress (heat) as modifiers of host gene expression in pea

MOLECULAR PLANT PATHOLOGY, Issue 3 2000
Margarita Escaler
Pea embryonic tissues respond to active replication of pea seed-borne mosaic potyvirus (PSbMV) by the down-regulation of a range of genes and the induction of others. Both of these responses can be seen when tissues are subjected to abiotic stress, particularly heat. We have compared the effects of the two inducers to assess whether the host alterations following virus replication represent generic responses to stress, or more specific effects. Five classes of response were identified: (i) genes induced by both stresses (e.g. heat shock protein 70, hsp70); (ii) genes induced by virus replication but unaffected by heat (e.g. glutathione reductase 2, gor2); (iii) genes induced by heat but unaffected by virus replication (e.g. heat shock factor, hsf); (iv) genes down-regulated by virus replication and unaffected by heat (e.g. vicilin, vic); and (v) genes unaffected by both inducers (e.g. actin, act and ,-tubulin, tub). A change in the appearance and organization of the endoplasmic reticulum (ER) was also seen in cells actively replicating PSbMV RNA. Heat treatment of pea embryonic tissues also produced altered ER, although the changes were different from those seen following virus infection. Collectively, these data show that, while there are some common features of the responses to virus infection and heat, there are also substantial differences. Hence, it appears that the host response to virus replication is not a general stress response. [source]


Identification and gene expression profiling of the Pum1 and Pum2 members of the Pumilio family in the chicken

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2008
Jee Young Lee
Abstract Members of the Pumilio (Pum) family of RNA-binding proteins act as translational repressors and are required for germ cell development and asymmetric division. We identified the chicken Pum1 and Pum2 genes and analyzed their expression patterns in various tissues. Comparative sequence analysis of the Pum1 and Pum2 proteins from the drosophila, chicken, mouse, and human revealed a high degree of evolutionary conservation in terms of the levels of homology of the peptide sequences and the structure of Pumilio homology domain (PUM-HD), C-terminal RNA-binding domain, with similar spacing between the adjacent Pum eight tandem repeats. In addition, phylogenetic patterns of pumilio family showed that Pum 1 and 2 of chicken are more closely related to those of mouse and human than other species and Pum1 is more conserved than Pum2. Using real-time RT-PCR, the expression levels of the Pum1 and Pum2 genes were found to be highest in hatched female gonads, and high-level expression of Pum2 was detected in 12-day and hatched gonads among the various chicken embryonic tissues tested. In adult tissues, the expression levels of Pum1 and Pum2 were expressed at higher levels in the testis and muscle than in any other tissue. The characteristics of the tissue-specific expression of Pum genes suggest that Pum1 and Pum2 have effects crucially in particular stage during development of chicken gonads depending on sexual maturation. Mol. Reprod. Dev. 75: 184,190, 2008. © 2007 Wiley-Liss, Inc. [source]