Home About us Contact | |||
Embryonic Stem (embryonic + stem)
Kinds of Embryonic Stem Terms modified by Embryonic Stem Selected AbstractsAnterior,posterior patterning of neural differentiated embryonic stem cells by canonical Wnts, Fgfs, Bmp4 and their respective antagonistsDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 8 2009Marijke Hendrickx Embryonic stem (ES) cells are pluripotent and can differentiate into every cell type of the body. Next to their potential in regenerative medicine, they are excellent tools to study embryonic development. In this work the processes of neural induction and neural patterning along the antero-posterior (A/P) body axis are studied and evidence suggests a two step mechanism for these events. First, neural induction occurs by default in the primitive ectoderm, forming anterior neural tissue and thereafter, a series of factors can posteriorize this anterior neurectoderm. In a gain-of-function/loss-of-function approach using mouse ES cells, we show that Fgf2 has the strongest caudalizing potential of all Fgfs tested. Furthermore, Bmp4 and Wnt3a, but not Wnt1, can caudalize the neurectodermal cells. The effect of the antagonists of these factors was also examined and though Dkk1 and Noggin clearly have an effect that opposes that of Wnt3a and Bmp4 respectively, they fail to anteriorize the neurectoderm. The patterning effect of SU5402, an Fgf receptor inhibitor, was rather limited. These data confirm that in the mouse, two steps are involved in neural patterning and we show that while Fgf4, Fgf8 and Wnt1 have no strong patterning effect, Fgf2, Wnt3a and Bmp4 are strong posteriorizing factors. [source] Identification and characterization of nucleoplasmin 3 as a histone-binding protein in embryonic stem cellsDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2008Natsuki Motoi Embryonic stem (ES) cells are thought to have unique chromatin structures responsible for their capacity for self-renewal and pluripotency. To examine this possibility, we sought nuclear proteins in mouse ES cells that specifically bind to histones using a pull-down assay with synthetic peptides of histone H3 and H4 tail domain as baits. Nuclear proteins preferentially bound to the latter. We identified 45 proteins associated with the histone H4 tail and grouped them into four categories: 10 chromatin remodeling proteins, five histone chaperones, two histone modification-related proteins, and 28 other proteins. mRNA expression levels of 20 proteins selected from these 45 proteins were compared between undifferentiated and retinoic acid (RA)-induced differentiated ES cells. All of the genes were similarly expressed in both states of ES cells, except nucleoplasmin 3 (NPM3) that was expressed at a higher level in the undifferentiated cells. NPM3 proteins were localized in the nucleoli and nuclei of the cells and expression was decreased during RA-induced differentiation. When transfected with NPM3 gene, ES cells significantly increased their proliferation compared with control cells. The present study strongly suggests that NPM3 is a chromatin remodeling protein responsible for the unique chromatin structure and replicative capacity of ES cells. [source] Changes in gene expression and morphology of mouse embryonic stem cells on differentiation into insulin-producing cells in vitro and in vivoDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 5 2009Ortwin Naujok Abstract Background Embryonic stem (ES) cells have the potential to produce unlimited numbers of surrogate insulin-producing cells for cell replacement therapy of type 1 diabetes mellitus. The impact of the in vivo environment on mouse ES cell differentiation towards insulin-producing cells was analysed morphologically after implantation. Methods ES cells differentiated in vitro into insulin-producing cells according to the Lumelsky protocol or a new four-stage differentiation protocol were analysed morphologically before and after implantation for gene expression by in situ reverse transcription polymerase chain reaction and protein expression by immunohistochemistry and ultrastructural analysis. Results In comparison with nestin positive ES cells developed according to the reference protocol, the number of ES cells differentiated with the four-stage protocol increased under in vivo conditions upon morphological analysis. The cells exhibited, in comparison to the in vitro situation, increased gene and protein expression of Pdx1, insulin, islet amyloid polypeptide (IAPP), the GLUT2 glucose transporter and glucokinase, which are functional markers for glucose-induced insulin secretion of pancreatic beta cells. Renal sub-capsular implantation of ES cells with a higher degree of differentiation achieved by in vitro differentiation with a four-stage protocol enabled further significant maturation for the beta-cell-specific markers, insulin and the co-stored IAPP as well as the glucose recognition structures. In contrast, further in vivo differentiation was not achieved with cells differentiated in vitro by the reference protocol. Conclusions A sufficient degree of in vitro differentiation is an essential prerequisite for further substantial maturation in a beta-cell-specific way in vivo, supported by cell-cell contacts and vascularisation. Copyright © 2009 John Wiley & Sons, Ltd. [source] TGF-, signaling potentiates differentiation of embryonic stem cells to Pdx-1 expressing endodermal cellsGENES TO CELLS, Issue 6 2005Nobuaki Shiraki Embryonic stem (ES) cells have the capacity to differentiate to every cell type that constitutes fetal or adult tissues. To trace and quantitatively assess the differentiation of ES cells into gut endodermal cells, we used an ES cell line with the lacZ gene inserted into the pdx-1 locus. Targeted mutations of pdx-1 in mice demonstrate that pdx-1 is required for pancreatic and rostral duodenal development; therefore, pdx-1 serves as an excellent early gut regional specific marker. When these ES cells were differentiated by removal of leukemia inhibitory factor (LIF), only fractional cells turned into lacZ positive, which indicates pancreatic-duodenal differentiation. Co-cultivation of ES cells with pancreatic rudiments induced a significant increase in the proportion of lacZ positive cell numbers and this increase was further enhanced by forced expression of a chick putative endoderm inducer gene, cmix. Transforming growth factor (TGF)-,2 mimicked the effects of pancreatic rudiments and this effect was enhanced by cmix expression. Expression analysis showed over-expression of cmix induced endodermal marker genes. These data indicate that one can make use of this knowledge on molecular events of embryonic development to drive ES cells to differentiate into pdx-1 expressing endodermal cells in vitro. [source] Sheep embryonic stem-like cells transplanted in full-thickness cartilage defectsJOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 3 2009Maria Dattena Abstract Articular cartilage regeneration is limited. Embryonic stem (ES) cell lines provide a source of totipotent cells for regenerating cartilage. Anatomical, biomechanical, physiological and immunological similarities between humans and sheep make this animal an optimal experimental model. This study examines the repair process of articular cartilage in sheep after transplantation of ES-like cells isolated from inner cell masses (ICMs) derived from in vitro -produced (IVP) vitrified embryos. Thirty-five ES-like colonies from 40 IVP embryos, positive for stage-specific embryonic antigens (SSEAs), were pooled in groups of two or three, embedded in fibrin glue and transplanted into osteochondral defects in the medial femoral condyles of 14 ewes. Empty defect (ED) and cell-free glue (G) in the controlateral stifle joint served as controls. The Y gene sequence was used to detect ES-like cells in the repair tissue by in situ hybridization (ISH). Two ewes were euthanized at 1 month post-operatively, three each at 2 and 6 months and four at 12 months. Repairing tissue was examined by biomechanical, macroscopic, histological, immunohistochemical (collagen type II) and ISH assays. Scores of all treatments showed no statistical significant differences among treatment groups at a given time period, although ES-like grafts showed a tendency toward a better healing process. ISH was positive in all ES-like specimens. This study demonstrates that ES-like cells transplanted into cartilage defects stimulate the repair process to promote better organization and tissue bulk. However, the small number of cells applied and the short interval between surgery and euthanasia might have negatively affected the results. Copyright © 2009 John Wiley & Sons, Ltd. [source] Generation of hepatocytes from cultured mouse embryonic stem cellsLIVER TRANSPLANTATION, Issue 10 2003Xiao Ling Kuai Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of fertilized blastocysts in vitro. ES cells can be induced to undergo differentiation into potentially all cell types. The aim of this study is to examine the differentiating potential of mouse ES cells into hepatocytes in the presence of retinoic acid (RA), hepatocyte growth factor (HGF), and ,-nerve growth factor (,-NGF). RA, HGF, and ,-NGF were added to the cell culture. Hepatocyte induction was confirmed morphologically, as well as biochemically, through immunohistochemical assays of ,1 -antitrypsin (,1 -AT) and alfafetaprotein (AFP) expression and reverse-transcriptase polymerase chain reaction tests for the presence of albumin, transthyretin, glucose 6 phosphates, hepatic nuclear factor 4, and SAPK/ERK kinase-1 (SEK1) messenger RNA, produced only by functioning hepatocytes. Fifteen days after the addition of HGF and ,-NGF to the cell culture, many epithelioid cells were noticed. ,1 -AT, AFP, albumin, transthyretin, glucose 6 phosphates, hepatic nuclear factor 4, and SEK1 messenger RNA expression also was detected, indicating successful ES cell differentiation into functioning hepatocytes. However, in the presence of RA alone, only transthyretin messenger RNA was positive, whereas no other expression pertaining to functioning hepatocytes could be detected. In the presence of HGF and ,-NGF, mouse ES cells can differentiate into functioning hepatocytes, whereas RA function is limited. [source] Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryoMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 10 2007Hathaitip Sritanaudomchai Abstract Embryonic stem (ES) cells derived from mammalian embryos have the ability to form any terminally differentiated cell of the body. We herein describe production of parthenogenetic buffalo (Bubalus Bubalis) blastocysts and subsequent isolation of an ES cell line. Established parthenogenetic ES (PGES) cells exhibited diploid karyotype and high telomerase activity. PGES cells showed remarkable long-term proliferative capacity providing the possibility for unlimited expansion in culture. Furthermore, these cells expressed key ES cell-specific markers defined for primate species including stage-specific embryonic antigen-4 (SSEA-4), tumor rejection antigen-1-81 (TRA-1-81), and octamer-binding transcription factor 4 (Oct-4). In vitro, in the absence of a feeder layer, cells readily formed embryoid bodies (EBs). When cultured for an extended period of time, EBs spontaneously differentiated into derivatives of three embryonic germ layers as detected by PCR for ectodermal (nestin, oligodendrocytes, and tubulin), mesodermal (scleraxis, ,- skeletal actin, collagen II, and osteocalcin) and endodermal markers (insulin and ,- fetoprotein). Differentiation of PGES cells toward chondrocyte lineage was directed by supplementing serum-containing media with ascorbic acid, ,-glycerophosphate, and dexamethasone. Moreover, when PGES cells were injected into nude mice, teratomas with derivatives representing all three embryonic germ layers were produced. Our results suggest that the cell line isolated from a parthenogenetic blastocyst holds properties of ES cells, and can be used as an in vitro model to study the effects of imprinting on cell differentiation and as an a invaluable material for extensive molecular studies on imprinted genes. Mol. Reprod. Dev. 74: 1295,1302, 2007. © 2007 Wiley-Liss, Inc. [source] Culturing in vitro produced blastocysts in sequential media promotes ES cell derivationMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 8 2006J. Liu Abstract Embryonic stem (ES) cell lines are routinely derived from in vivo produced blastocysts. We investigated the efficiency of ES cells derivation from in vitro produced blastocysts either in monoculture or sequential culture. Zygotes from hybrid F1 B6D2 mice were cultured in vitro to the blastocyst stage in Potassium (K+) simplex optimised medium (KSOM) throughout or in KSOM and switched to COOK blastocyst medium on day 3 (KSOM,CBM). Blastocysts were explanted on a feeder layer of mitomycin C-inactivated murine embryonic fibroblasts (MEF) in TX-WES medium for ES cell derivation. Sequential KSOM,CBM resulted in improved blastocyst formation compared to KSOM monoculture. ES cells were obtained from 32.1% of explanted blastocsyts cultured in KSOM,CBM versus18.4% in KSOM alone. ES cell lines were characterized by morphology, expression of SSEA-1, Oct-4 and alkaline phosphatase activity, and normal karyotype. These results indicate that in vitro culture systems to produce blastocysts can influence the efficiency of ES cell line derivation. Mol. Reprod. Dev. 1017,1021, 2006. © 2006 Wiley-Liss, Inc. [source] Cryopreservation of isolated blastomeres and embryonic stem-like cells of Leopard danio, Brachydanio frankeiAQUACULTURE RESEARCH, Issue 4 2010Padmanav Routray Abstract This study aimed at developing a suitable cryopreservation protocol for embryonic stem (ES)-like cells of a tiny freshwater fish Leopard danio (Brachydanio frankei). Embryonic stem (ES)-like cells derived from blastomeres of the early blastulae stage of the developing embryo were cultured in vitro in a medium containing Leibowitz-15 supplemented with 10% foetal bovine serum, leopard danio embryo extract, sodium bicarbonate, sodium selenite, basic fibroblast growth factor, epidermal growth factor and leukaemia inhibitory factor. The ES-like cells showed properties similar to ES cells in other species. They were morphologically small, round to polygonal and present in patches and extensively expressed alkaline phosphatase and stage-specific embryonic antigen. The toxicity and chilling sensitivity of these cells were determined using ethylene glycol (EG), propylene glycol (PG) and glycerol as cryoprotective agents at molar concentrations of 0.6, 1.0, 1.4, 1.8 and 2.0. Among them, 1.8 M EG showed 70% significant viable ES-like cells (P<0.05). The post-thawed cells retained similar properties of non-cryopreserved ES-like cells with a viability rate of 65%. Similarly, blastomeres cryopreserved following the slow cooling rate with EG and PG yielded a viability of more than 70%. [source] Extrinsic factors derived from mouse embryonal carcinoma cell lines maintain pluripotency of mouse embryonic stem cells through a novel signal pathwayDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2 2009Shinjirou Kawazoe Embryonic carcinoma (EC) cells, which are malignant stem cells of teratocarcinoma, have numerous morphological and biochemical properties in common with pluripotent stem cells such as embryonic stem (ES) cells. However, three EC cell lines (F9, P19 and PCC3) show different developmental potential and self-renewal capacity from those of ES cells. All three EC cell lines maintain self-renewal capacity in serum containing medium without Leukemia Inhibitory factor (LIF) or feeder layer, and show limited differentiation capacity into restricted lineage and cell types. To reveal the underlying mechanism of these characteristics, we took the approach of characterizing extrinsic factors derived from EC cells on the self-renewal capacity and pluripotency of mouse ES cells. Here we demonstrate that EC cell lines F9 and P19 produce factor(s) maintaining the undifferentiated state of mouse ES cells via an unidentified signal pathway, while P19 and PCC3 cells produce self-renewal factors of ES cells other than LIF that were able to activate the STAT3 signal; however, inhibition of STAT3 activation with Janus kinase inhibitor shows only partial impairment on the maintenance of the undifferentiated state of ES cells. Thus, these factors present in EC cells-derived conditioned medium may be responsible for the self-renewal capacity of EC and ES cells independently of LIF signaling. [source] Epigenetic regulation of the imprinted U2af1-rs1 gene during retinoic acid-induced differentiation of embryonic stem cellsDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2006Noelia Andollo Epigenetic modifications such as DNA methylation and changes in chromatin structure are changes in the chemical composition or structure of DNA that work by regulating gene expression. Their mechanisms of action have been generally studied in imprinted genes. The present work analyzes the involvement of these mechanisms in the expression of the U2af1-rs1 imprinted gene during the differentiation process of embryonic stem (ES) cells induced by retinoic acid. By DNA digestion with methylation-dependent or independent restriction enzymes and consecutive Southern blot, we have found that methylation of the U2af1-rs1 gene increases in differentiated ES cells and in embryoid bodies. However, northern blot and real-time reverse transcription,polymerase chain reaction analysis showed a higher expression of the U2af1-rs1 gene in differentiated ES cells and in embryoid bodies than in undifferentiated ones. On the other hand, the sensitivity to DNase-I assay demonstrated an open chromatin conformation for differentiated cells with regard to undifferentiated ES cells. Our results suggest that the expression of the U2af1-rs1 gene would be regulated by changes in chromatin structure rather than by DNA methylation during the RA-induced process of differentiation of ES cells. [source] IFN-, induces apoptosis in mouse embryonic stem cells, a putative mechanism of its embryotoxicityDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2000Gang-Ming Zou It has been reported that interferon (IFN)-, should inhibit in vitro mouse embryo growth by direct cell toxicity. However, the mechanism involved has not been clearly established. In the present study, this question was addressed using the embryonic stem (ES) cell model. It was found that IFN-, induces a dose-dependent apoptosis in ES cells, as assessed by trypan-blue staining, by Annexin-V labeling and DNA analysis. Moreover, IFN-, treatment cooperates with Fas-mediated apoptosis, a phenomenon that has been recently reported. As Bcl-2 oncoprotein functions as a death repressor molecule in an evolutionarily conserved cell death pathway, its expression was analyzed by flow cytometry. It was demonstrated that Bcl-2 is expressed in ES cells. When compared to untreated ES cells, IFN-,-treated, apoptotic cells expressed a lower Bcl-2 level and a normal level of Fas, whereas surviving cells expressed a normal level of Bcl-2 but a lower Fas expression. Altogether, these data suggest that IFN-, may influence early mouse embryo development by promoting apoptosis, which may constitute a novel mechanism of IFN-, embryotoxicity. [source] Comparative evaluation of human embryonic stem cell lines derived from zygotes with normal and abnormal pronucleiDEVELOPMENTAL DYNAMICS, Issue 2 2010Qing Huan Abstract Human embryonic stem (hES) cell lines have been derived from normally or abnormally fertilized zygotes. However, the similar and different properties of these two types of hES cell lines are not well-known. To address this question, we generated nine hES cell lines from zygotes containing normal (2PN) and abnormal (0PN, 1PN, 3PN) pronuclei. A side-by-side comparison showed that all cell lines exhibited distinct identity and karyotypical stability. They expressed similar "stemness" markers and alkaline phosphatase activity and differentiated into three embryonic germ lineages in embryoid bodies and teratomas. Under neural differentiation-promoting conditions, they were directed into neural progenitors and neurons. However, a variation in cell cycle and the relative abundance of gene expression of undifferentiated and differentiated markers were observed. These variations were also seen among individually derived normal hES cell lines. Thus, normal hES cell lines can be developed from fertilized zygotes with abnormal pronuclei usually excluded from clinical use. Developmental Dynamics 239:425,438, 2010. © 2009 Wiley-Liss, Inc. [source] Iris as a recipient tissue for pigment cells: Organized in vivo differentiation of melanocytes and pigmented epithelium derived from embryonic stem cells in vitroDEVELOPMENTAL DYNAMICS, Issue 9 2008Hitomi Aoki Abstract Regenerative transplantation of embryonic stem (ES) cell-derived melanocytes into adult tissues, especially skin that includes hair follicles or the hair follicle itself, generally not possible, whereas that of ES cell-derived pigmented epithelium was reported previously. We investigated the in vivo differentiation of these two pigment cell types derived from ES cells after their transfer into the iris. Melanocytes derived from ES cells efficiently integrated into the iris and expanded to fill the stromal layer of the iris, like those prepared from neonatal skin. Transplanted pigmented epithelium from either ES cells or the neonatal eye was also found to be integrated into the iris. Both types of these regenerated pigment cells showed the correct morphology. Regenerated pigment epithelium expressed its functional marker. Functional blocking of signals required for melanocyte development abolished the differentiation of transplanted melanocytes. These results indicate successful in vivo regenerative transfer of pigment cells induced from ES cells in vitro. Developmental Dynamics 237:2394,2404, 2008. © 2008 Wiley-Liss, Inc. [source] Differentiation trapping screen in live culture for genes expressed in cardiovascular lineagesDEVELOPMENTAL DYNAMICS, Issue 2 2004Weisheng V. Chen Abstract We have developed a gene trap vector that transduces an EGFP-neo fusion gene (Eno) to monitor the expression of trapped genes in living cells and embryos. Upon in vitro differentiation, most gene-trapped embryonic stem (ES) cell clones exhibited detectable green fluorescence in various specialized cell types, which can be followed in the live culture in real time. Populations of ES cell-derived cardiomyocytes, smooth muscle cells, vascular endothelial cells, and hematopoietic cells were readily recognized by their distinctive morphologies coupled with unique activities, allowing efficient screening for clones with trapped genes expressed in cardiovascular lineages. Applying G418 selection in parallel differentiation cultures further increased detection sensitivity and screening throughput by enriching reporter-expressing cells with intensified green fluorescent protein signals. Sequence analyses and chimera studies demonstrated that the expression of trapped genes in vivo closely correlated with the observed lineage specificity in vitro. This provides a strategy to identify and mutate genes expressed in lineages of interest for further functional studies. Developmental Dynamics 229:319,327, 2004. © 2004 Wiley-Liss, Inc. [source] Integration and differentiation of human embryonic stem cells transplanted to the chick embryoDEVELOPMENTAL DYNAMICS, Issue 1 2002Ronald S. Goldstein Abstract Human embryonic stem (ES) cells are pluripotent cells that can differentiate into a large array of cell types and, thus, hold promise for advancing our understanding of human embryology and for contributing to transplantation medicine. In this study, differentiation of human ES cells was examined in vivo by in ovo transplantation to organogenesis-stage embryos. Colonies of human ES cells were grafted into or in place of epithelial-stage somites of chick embryos of 1.5 to 2 days of development. The grafted human ES cells survived in the chick host and were identified by vital staining with carboxyfluorescein diacetate or use of a green fluorescent protein,expressing cells. Histologic analysis showed that human ES cells are easily distinguished from host cells by their larger, more intensely staining nuclei. Some grafted cells differentiated en masse into epithelia, whereas others migrated and mingled with host tissues, including the dorsal root ganglion. Colonies grafted directly adjacent to the host neural tube produced primarily structures with the morphology and molecular characteristics of neural rosettes. These structures contain differentiated neurons as shown by ,-3-tubulin and neurofilament expression in axons and cell bodies. Axons derived from the grafted cells penetrate the host nervous system, and host axons enter the structures derived from the graft. Our results show that human ES cells transplanted in ovo survive, divide, differentiate, and integrate with host tissues and that the host embryonic environment may modulate their differentiation. The chick embryo, therefore, may serve as an accessible and unique experimental system for the study of in vivo development of human ES cells. © 2002 Wiley-Liss, Inc. [source] Sorting nexin-14, a gene expressed in motoneurons trapped by an in vitro preselection methodDEVELOPMENTAL DYNAMICS, Issue 4 2001Patrick Carroll Abstract A gene-trap strategy was set up in embryonic stem (ES) cells with the aim of trapping genes expressed in restricted neuronal lineages. The vector used trap genes irrespective of their activity in undifferentiated totipotent ES cells. Clones were subjected individually to differentiation in a system in which ES cells differentiated into neurons. Two ES clones in which the trapped gene was expressed in ES-derived neurons were studied in detail. The corresponding cDNAs were cloned, sequenced, and analysed by in situ hybridisation on wild-type embryo sections. Both genes are expressed in the nervous system. One gene, YR-23, encodes a large intracellular protein of unknown function. The second clone, YR-14, represents a sorting nexin (SNX14) gene whose expression in vivo coincides with that of LIM-homeodomain Islet-1 in several tissues. Sorting nexins are proteins associated with the endoplasmic reticulum (ER) and may play a role in receptor trafficking. Gene trapping followed by screening based on in vitro preselection of differentiated ES recombinant clones, therefore, has the potential to identify integration events in subsets of genes before generation of mouse mutants. © 2001 Wiley-Liss, Inc. [source] Glucose-responsive insulin-producing cells from stem cellsDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 6 2002David J. Kaczorowski Abstract Recent success with immunosuppression following islet cell transplantation offers hope that a cell transplantation treatment for type 1 (juvenile) diabetes may be possible if sufficient quantities of safe and effective cells can be produced. For the treatment of type 1 diabetes, the two therapeutically essential functions are the ability to monitor blood glucose levels and the production of corresponding and sufficient levels of mature insulin to maintain glycemic control. Stem cells can replicate themselves and produce cells that take on more specialized functions. If a source of stem cells capable of yielding glucose-responsive insulin-producing (GRIP) cells can be identified, then transplantation-based treatment for type 1 diabetes may become widely available. Currently, stem cells from embryonic and adult sources are being investigated for their ability to proliferate and differentiate into cells with GRIP function. Human embryonic pluripotent stem cells, commonly referred to as embryonic stem (ES) cells and embryonic germ (EG) cells, have received significant attention owing to their broad capacity to differentiate and ability to proliferate well in culture. Their application to diabetes research is of particular promise, as it has been demonstrated that mouse ES cells are capable of producing cells able to normalize glucose levels of diabetic mice, and human ES cells can differentiate into cells capable of insulin production. Cells with GRIP function have also been derived from stem cells residing in adult organisms, here referred to as endogenous stem cell sources. Independent of source, stem cells capable of producing cells with GRIP function may provide a widely available cell transplantation treatment for type 1 diabetes. Copyright © 2002 John Wiley & Sons, Ltd. [source] Nuclear proteome analysis of undifferentiated mouse embryonic stem and germ cellsELECTROPHORESIS, Issue 11 2008Nicolas Buhr Abstract Embryonic stem cells (ESCs) and embryonic germ cells (EGCs) provide exciting models for understanding the underlying mechanisms that make a cell pluripotent. Indeed, such understanding would enable dedifferentiation and reprogrammation of any cell type from a patient needing a cell therapy treatment. Proteome analysis has emerged as an important technology for deciphering these biological processes and thereby ESC and EGC proteomes are increasingly studied. Nevertheless, their nuclear proteomes have only been poorly investigated up to now. In order to investigate signaling pathways potentially involved in pluripotency, proteomic analyses have been performed on mouse ESC and EGC nuclear proteins. Nuclei from ESCs and EGCs at undifferentiated stage were purified by subcellular fractionation. After 2-D separation, a subtractive strategy (subtracting culture environment contaminating spots) was applied and a comparison of ESC, (8.5 day post coïtum (dpc))-EGC and (11.5,dpc)-EGC specific nuclear proteomes was performed. A total of 33 ESC, 53 (8.5,dpc)-EGC, and 36 (11.5,dpc)-EGC spots were identified by MALDI-TOF-MS and/or nano-LC-MS/MS. This approach led to the identification of two isoforms (with and without N -terminal acetylation) of a known pluripotency marker, namely developmental pluripotency associated 5 (DPPA5), which has never been identified before in 2-D gel-MS studies of ESCs and EGCs. Furthermore, we demonstrated the efficiency of our subtracting strategy, in association with a nuclear subfractionation by the identification of a new protein (protein arginine N -methyltransferase 7; PRMT7) behaving as proteins involved in pluripotency. [source] Proteome analysis of the culture environment supporting undifferentiated mouse embryonic stem and germ cell growthELECTROPHORESIS, Issue 10 2007Nicolas Buhr Abstract The therapeutical interest of pluripotent cells and ethical issues related to the establishment of human embryonic stem cell (ESC) or embryonic germ cell (EGC) lines raise the understanding of the mechanism underlying pluripotency to a fundamental issue. Establishing a protein pluripotency signature for these cells can be complicated by the presence of unrelated proteins produced by the culture environment. Here, we have analyzed the environment supporting ESC and EGC growth, and established 2-D reference maps for each constituent present in this culture environment: mouse embryonic fibroblast feeder cells, culture medium (CM) and gelatin. The establishment of these reference maps is essential prior to the study of ESC and EGC specific proteomes. Indeed, these maps can be subtracted from ESC or EGC maps to allow focusing on spots specific for ESCs or EGCs. Our study led to the identification of 110 unique proteins from fibroblast feeder cells and 23 unique proteins from the CM, which represent major contaminants of ESC and EGC proteomes. For gelatin, no collagen-specific proteins were identified, most likely due to difficulties in resolution and low quantities. Furthermore, no differences were observed between naive and conditioned CM. Finally, we compared these reference maps to ESC 2-D gels and isolated 17 ESC specific spots. Among these spots, proteins that had already been identified in previous human and mouse ESC proteomes were identified but no apparent ESC-specific pluripotency marker could be identified. This work represents an essential step in furthering the knowledge of environmental factors supporting ESC and EGC growth. [source] Electrical and neurotransmitter activity of mature neurons derived from mouse embryonic stem cells by Sox-1 lineage selection and directed differentiationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2004R. J. Lang Abstract Sx1TV2/16C is a mouse embryonic stem (ES) cell line in which one copy of the Sox1 gene, an early neuroectodermal marker, has been targeted with a neomycin (G418) selection cassette. A combination of directed differentiation with retinoic acid and G418 selection results in an enriched neural stem cell population that can be further differentiated into neurons. After 6,7 days post-plating (D6,7PP) most neurons readily fired tetrodotoxin (TTX)-sensitive action potentials due to the expression of TTX-sensitive Na+ and tetraethylammonium (TEA)-sensitive K+ channels. Neurons reached their maximal cell capacitance after D6,7PP; however, ion channel expression continued until at least D21PP. The percentage of cells receiving spontaneous synaptic currents (s.s.c.) increased with days in culture until 100% of cells received a synaptic input by D20PP. Spontaneous synaptic currents were reduced in amplitude and frequency by TTX, or upon exposure to a Ca2+ -free, 2.5 mm Mg2+ saline. S.s.c. of rapid decay time constants were preferentially blocked by the nonNMDA glutamatergic receptor antagonists CNQX or NBQX. Ca2+ levels within ES cell-derived neurons increased in response to glutamate receptor agonists l -glutamate, AMPA, N -methyl- d -aspartate (NMDA) and kainic acid and to acetylcholine, ATP and dopamine. ES cell-derived neurons also generated cationic and Cl, -selective currents in response to NMDA and glycine or GABA, respectively. It was concluded that ES-derived neurons fire action potentials, receive excitatory and inhibitory synaptic input and respond to various neurotransmitters in a manner akin to primary central neurons. [source] Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004Suling Zhao Abstract We have generated embryonic stem (ES) cells and transgenic mice with green fluorescent protein (GFP) inserted into the Pitx3 locus via homologous recombination. In the central nervous system, Pitx3 -directed GFP was visualized in dopaminergic (DA) neurons in the substantia nigra and ventral tegmental area. Live primary DA neurons can be isolated by fluorescence-activated cell sorting from these transgenic mouse embryos. In culture, Pitx3,GFP is coexpressed in a proportion of ES-derived DA neurons. Furthermore, ES cell-derived Pitx3,GFP expressing DA neurons responded to neurotrophic factors and were sensitive to DA-specific neurotoxin N-4-methyl-1, 2, 3, 6-tetrahydropyridine. We anticipate that the Pitx3,GFP ES cells could be used as a powerful model system for functional identification of molecules governing mDA neuron differentiation and for preclinical research including pharmaceutical drug screening and transplantation. The Pitx3 knock-in mice, on the other hand, could be used for purifying primary neurons for molecular studies associated with the midbrain-specific DA phenotype at a level not previously feasible. These mice would also provide a useful tool to study DA fate determination from embryo- or adult-derived neural stem cells. [source] Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002Sangmi Chung Abstract Nurr1 is a transcription factor critical for the development of midbrain dopaminergic (DA) neurons. This study modified mouse embryonic stem (ES) cells to constitutively express Nurr1 under the elongation factor-1, promoter. The Nurr1-expression in ES cells lead to up-regulation of all DA neuronal markers tested, resulting in about a 4- to 5-fold increase in the proportion of DA neurons. In contrast, other neuronal and glial markers were not significantly changed by Nurr1 expression. It was also observed that there was an additional 4-fold increase in the number of DA neurons in Nurr1-expressing clones following treatment with Shh, FGF8 and ascorbic acid. Several lines of evidence suggest that these neurons may represent midbrain DA neuronal phenotypes; firstly, they coexpress midbrain DA markers such as aromatic l -amino acid decarboxylase, calretinin, and dopamine transporter, in addition to tyrosine hydroxylase and secondly, they do not coexpress other neurotransmitters such as GABA or serotonin. Finally, consistent with an increased number of DA neurons, the Nurr1 transduction enhanced the ability of these neurons to produce and release DA in response to membrane depolarization. This study demonstrates an efficient genetic manipulation of ES cells that facilitates differentiation to midbrain DA neurons, and it will serve as a framework of genetic engineering of ES cells by key transcription factor to regulate their cell fate. [source] DPPA4 modulates chromatin structure via association with DNA and core histone H3 in mouse embryonic stem cellsGENES TO CELLS, Issue 4 2010Hisaharu Masaki Developmental pluripotency associated 4 (DPPA4) is one of the uncharacterized genes that is highly expressed in embryonic stem (ES) cells. DPPA4 is associated with active chromatin and involved in the pluripotency of mouse ES cells. However, the biological function of DPPA4 remains poorly understood. In this study, we performed fluorescence recovery after photobleaching (FRAP) analysis to examine the dynamics of DPPA4 in ES cells. FRAP analysis showed that the mobility of DPPA4 is similar to that of histone H1. In addition, biochemical analysis with purified proteins and immunoprecipitation analysis showed that DPPA4 directly binds to both DNA and core histone H3. The analysis using truncated proteins indicated that DPPA4 is associated with DNA via the N-terminal region and histone H3 via the C-terminal region. In vitro assembled chromatin showed resistance to micrococcal nuclease (MNase) digestion in the presence of DPPA4. Moreover, MNase assay and FRAP analysis with the truncated proteins implies that DPPA4 binding to both DNA and histone H3 is necessary for the chromatin structure resistant to MNase and for the proper localization of DPPA4 in ES cell nuclei. These results suggest that DPPA4 modulates the chromatin structure in association with DNA and histone H3 in ES cells. [source] Dynamic changes in the epigenomic state and nuclear organization of differentiating mouse embryonic stem cellsGENES TO CELLS, Issue 4 2007Satoru Kobayakawa Changes in nuclear organization and the epigenetic state of the genome are important driving forces for developmental gene expression. However, a strategy that allows simultaneous visualization of the dynamics of the epigenomic state and nuclear structure has been lacking to date. We established an experimental system to observe global DNA methylation in living mouse embryonic stem (ES) cells. The methylated DNA binding domain (MBD) and the nuclear localization signal (nls) sequence coding for human methyl CpG-binding domain protein 1 (MBD1) were fused to the enhanced green fluorescent protein (EGFP) reporter gene, and ES cell lines carrying the construct (EGFP-MBD-nls) were established. The EGFP-MBD-nls protein was used to follow DNA methylation in situ under physiological conditions. We also monitored the formation and rearrangement of methylated heterochromatin using EGFP-MBD-nls. Pluripotent mouse ES cells showed unique nuclear organization in that methylated centromeric heterochromatin coalesced to form large clusters around the nucleoli. Upon differentiation, the organization of these heterochromatin clusters changed dramatically. Time-lapse microscopy successfully captured a moment of dramatic change in chromosome positioning during the transition between two differentiation stages. Thus, this experimental system should facilitate studies focusing on relationships between nuclear organization, epigenetic status and cell differentiation. [source] NANOG maintains self-renewal of primate ES cells in the absence of a feeder layerGENES TO CELLS, Issue 9 2006Shin-ya Yasuda Nanog is a homeodomain transcription factor that is expressed specifically in undifferentiated embryonic stem (ES) cells and has been shown to be essential in the maintenance of pluripotency in mouse ES cells. To examine the function of NANOG in primate ES cells, we generated transgenic monkey ES cell lines expressing three- to seven-fold higher levels of NANOG protein compared to wild-type ES cells. These NANOG over-expressing cell lines retained their undifferentiated state in the absence of a feeder layer, as shown by expression of undifferentiated ES cell markers such as alkaline phosphatase (ALP) and OCT-4. We also demonstrated that in vitro differentiation of transgenic cell lines was mostly restricted to the ectodermal lineage, as examined by reverse transcriptase-polymerase chain reaction (RT-PCR). Knockdown experiments using NANOG small interfering (si) RNA resulted in induction of differentiation markers such as AFP, GATA4 and GATA6 for the endoderm and CDX2 for the trophectoderm. These results suggest that NANOG plays a crucial role in maintaining the pluripotent state of primate ES cells. [source] Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3bGENES TO CELLS, Issue 7 2006Akiko Tsumura DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b cooperatively regulate cytosine methylation in CpG dinucleotides in mammalian genomes, providing an epigenetic basis for gene silencing and maintenance of genome integrity. Proper CpG methylation is required for the normal growth of various somatic cell types, indicating its essential role in the basic cellular function of mammalian cells. Previous studies using Dnmt1,/, or Dnmt3a,/,Dnmt3b,/, ES cells, however, have shown that undifferentiated embryonic stem (ES) cells can tolerate hypomethylation for their proliferation. In an attempt to investigate the effects of the complete loss of CpG DNA methyltransferase function, we established mouse ES cells lacking all three of these enzymes by gene targeting. Despite the absence of CpG methylation, as demonstrated by genome-wide methylation analysis, these triple knockout (TKO) ES cells grew robustly and maintained their undifferentiated characteristics. TKO ES cells retained pericentromeric heterochromatin domains marked with methylation at Lys9 of histone H3 and heterochromatin protein-1, and maintained their normal chromosome numbers. Our results indicate that ES cells can maintain stem cell properties and chromosomal stability in the absence of CpG methylation and CpG DNA methyltransferases. [source] Interpretation of knockout experiments: the congenic footprintGENES, BRAIN AND BEHAVIOR, Issue 3 2007L. C. Schalkwyk In gene targeting experiments, the importance of genetic background is now widely appreciated, and knockout alleles are routinely backcrossed onto a standard inbred background. This produces a congenic strain with a substantial segment of embryonic stem (ES)-cell-derived chromosome still flanking the knockout allele, a phenomenon often neglected in knockout studies. In cholecystokynin 2 (Cckbr) knockout mice backcrossed with C57BL/6, we have found a clear ,congenic footprint' of expression differences in at least 10 genes across 40 Mb sequence flanking the Cckbr locus, each of which is potentially responsible for aspects of the ,knockout' phenotype. The expression differences are overwhelmingly in the knockout-low direction, which may point to a general phenomenon of background dependence. This finding emphasizes the need for caution in using gene knockouts to attribute phenotypic effects to genes. This is especially the case when the gene is of unknown function or the phenotype is unexpected, and is a particular concern for large-scale knockout and phenotypic screening programmes. However, the impact of genetic background should not be simply viewed as a potential confound, but as a unique opportunity to study the broader responses of a system to a specific (genetic) perturbation. [source] A review of current large-scale mouse knockout effortsGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2010Chunmei Guan Abstract After the successful completion of the human genome project (HGP), biological research in the postgenome era urgently needs an efficient approach for functional analysis of genes. Utilization of knockout mouse models has been powerful for elucidating the function of genes as well as finding new therapeutic interventions for human diseases. Gene trapping and gene targeting are two independent techniques for making knockout mice from embryonic stem (ES) cells. Gene trapping is high-throughput, random, and sequence-tagged while gene targeting enables the knockout of specific genes. It has been about 20 years since the first gene targeting and gene trapping mice were generated. In recent years, new tools have emerged for both gene targeting and gene trapping, and organizations have been formed to knock out genes in the mouse genome using either of the two methods. The knockout mouse project (KOMP) and the international gene trap consortium (IGTC) were initiated to create convenient resources for scientific research worldwide and knock out all the mouse genes. Organizers of KOMP regard it as important as the HGP. Gene targeting methods have changed from conventional gene targeting to high-throughput conditional gene targeting. The combined advantages of trapping and targeting elements are improving the gene trapping spectrum and gene targeting efficiency. As a newly-developed insertional mutation system, transposons have some advantages over retrovirus in trapping genes. Emergence of the international knockout mouse consortium (IKMP) is the beginning of a global collaboration to systematically knock out all the genes in the mouse genome for functional genomic research. genesis 48:73,85, 2010. © 2010 Wiley-Liss, Inc. [source] Stable generation of serum- and feeder-free embryonic stem cell-derived mice with full germline-competency by using a GSK3 specific inhibitorGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 6 2009Hiromu Sato Abstract C57BL/6 (B6)-derived embryonic stem (ES) cells are not widely used to generate knockout mice despite the advantage of a well-defined genetic background because of poor developmental potential. We newly established serum- and feeder-free B6 ES cells with full developmental potential by using leukemia inhibitory factor (LIF) and 6-bromoindirubin-3,-oxime (BIO), a glycogen synthase kinase-3 (GSK3) inhibitor. BIO treatment significantly increased the expression levels of 364 genes including pluripotency markers such as Nanog and Klf family. Unexpectedly, by aggregating or microinjecting those ES cells to each eight-cell-stage diploid embryo, we stably generated germline-competent ES-derived mice. Furthermore, founder mice completely derived from female XO, heterozygous, or homozygous mutant B6 ES cells were directly available for intercross breeding and phenotypic analysis. We hereby propose that serum- and feeder-free B6 ES cells stimulated with LIF plus GSK3 inhibitor are valuable for generating mouse models on B6 background. genesis 47:414,422, 2009. © 2009 Wiley-Liss, Inc. [source] |