Embryonic Germ Cells (embryonic + germ_cell)

Distribution by Scientific Domains


Selected Abstracts


Imprinting Status of G,S, NESP55, and XL,s in Cell Cultures Derived from Human Embryonic Germ Cells: GNAS Imprinting in Human Embryonic Germ Cells

CLINICAL AND TRANSLATIONAL SCIENCE, Issue 5 2009
Janet L. Crane M.D.
Abstract GNAS is a complex gene that through use of alternative first exons encodes signaling proteins G,s and XL,s plus neurosecretory protein NESP55. Tissue-specific expression of these proteins is regulated through reciprocal genomic imprinting in fully differentiated and developed tissue. Mutations in GNAS account for several human disorders, including McCune-Albright syndrome and Albright hereditary osteodystrophy, and further knowledge of GNAS imprinting may provide insights into variable phenotypes of these disorders. We therefore analyzed expression of G,s, NESP55, and XL,s prior to tissue differentiation in cell cultures derived from human primordia germ cells. We found that the expression of G,s was biallelic (maternal allele: 52.6%± 2.5%; paternal allele: 47.2%± 2.5%; p= 0.07), whereas NESP55 was expressed preferentially from the maternal allele (maternal allele: 81.9%± 10%; paternal allele: 18.1%± 10%; p= 0.002) and XL,s was preferentially expressed from the paternal allele (maternal allele: 2.7%± 0.3%; paternal allele: 97.3%± 0.3%; p= 0.007). These results demonstrate that imprinting of NESP55 occurs very early in development, although complete imprinting appears to take place later than 5,11 weeks postfertilization, and that imprinting of XL,s occurs very early postfertilization. By contrast, mprinting of G,s most likely occurs after 11 weeks postfertilization and after tissue differentiation. [source]


Proteome analysis of the culture environment supporting undifferentiated mouse embryonic stem and germ cell growth

ELECTROPHORESIS, Issue 10 2007
Nicolas Buhr
Abstract The therapeutical interest of pluripotent cells and ethical issues related to the establishment of human embryonic stem cell (ESC) or embryonic germ cell (EGC) lines raise the understanding of the mechanism underlying pluripotency to a fundamental issue. Establishing a protein pluripotency signature for these cells can be complicated by the presence of unrelated proteins produced by the culture environment. Here, we have analyzed the environment supporting ESC and EGC growth, and established 2-D reference maps for each constituent present in this culture environment: mouse embryonic fibroblast feeder cells, culture medium (CM) and gelatin. The establishment of these reference maps is essential prior to the study of ESC and EGC specific proteomes. Indeed, these maps can be subtracted from ESC or EGC maps to allow focusing on spots specific for ESCs or EGCs. Our study led to the identification of 110 unique proteins from fibroblast feeder cells and 23 unique proteins from the CM, which represent major contaminants of ESC and EGC proteomes. For gelatin, no collagen-specific proteins were identified, most likely due to difficulties in resolution and low quantities. Furthermore, no differences were observed between naive and conditioned CM. Finally, we compared these reference maps to ESC 2-D gels and isolated 17 ESC specific spots. Among these spots, proteins that had already been identified in previous human and mouse ESC proteomes were identified but no apparent ESC-specific pluripotency marker could be identified. This work represents an essential step in furthering the knowledge of environmental factors supporting ESC and EGC growth. [source]


Nuclear proteome analysis of undifferentiated mouse embryonic stem and germ cells

ELECTROPHORESIS, Issue 11 2008
Nicolas Buhr
Abstract Embryonic stem cells (ESCs) and embryonic germ cells (EGCs) provide exciting models for understanding the underlying mechanisms that make a cell pluripotent. Indeed, such understanding would enable dedifferentiation and reprogrammation of any cell type from a patient needing a cell therapy treatment. Proteome analysis has emerged as an important technology for deciphering these biological processes and thereby ESC and EGC proteomes are increasingly studied. Nevertheless, their nuclear proteomes have only been poorly investigated up to now. In order to investigate signaling pathways potentially involved in pluripotency, proteomic analyses have been performed on mouse ESC and EGC nuclear proteins. Nuclei from ESCs and EGCs at undifferentiated stage were purified by subcellular fractionation. After 2-D separation, a subtractive strategy (subtracting culture environment contaminating spots) was applied and a comparison of ESC, (8.5 day post coïtum (dpc))-EGC and (11.5,dpc)-EGC specific nuclear proteomes was performed. A total of 33 ESC, 53 (8.5,dpc)-EGC, and 36 (11.5,dpc)-EGC spots were identified by MALDI-TOF-MS and/or nano-LC-MS/MS. This approach led to the identification of two isoforms (with and without N -terminal acetylation) of a known pluripotency marker, namely developmental pluripotency associated 5 (DPPA5), which has never been identified before in 2-D gel-MS studies of ESCs and EGCs. Furthermore, we demonstrated the efficiency of our subtracting strategy, in association with a nuclear subfractionation by the identification of a new protein (protein arginine N -methyltransferase 7; PRMT7) behaving as proteins involved in pluripotency. [source]


Genome-wide DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) residing in mouse pluripotent stem cells

GENES TO CELLS, Issue 6 2010
Shinya Sato
DNA methylation profile, consisting of tissue-dependent and differentially methylated regions (T-DMRs), has elucidated tissue-specific gene function in mouse tissues. Here, we identified and profiled thousands of T-DMRs in embryonic stem cells (ESCs), embryonic germ cells (EGCs) and induced pluripotent stem cells (iPSCs). T-DMRs of ESCs compared with somatic tissues well illustrated gene function of ESCs, by hypomethylation at genes associated with CpG islands and nuclear events including transcriptional regulation network of ESCs, and by hypermethylation at genes for tissue-specific function. These T-DMRs in EGCs and iPSCs showed DNA methylation similar to ESCs. iPSCs, however, showed hypomethylation at a considerable number of T-DMRs that were hypermethylated in ESCs, suggesting existence of traceable progenitor epigenetic information. Thus, DNA methylation profile of T-DMRs contributes to the mechanism of pluripotency, and can be a feasible solution for identification and evaluation of the pluripotent cells. [source]


Human embryo and early fetus research

CLINICAL GENETICS, Issue 2 2006
H Ostrer
Studies of human embryos and fetuses have highlighted developmental differences between humans and model organisms. In addition to describing the normal biology of our own species, a justification in itself, studies of early human development have aided identification of candidate disease genes mapped by positional cloning strategies, understanding pathophysiology, where human disorders are not faithfully reproduced by models in other species, and, more recently, potential therapies based on human embryonic stem and embryonic germ cells. In this article, we review these applications. We also discuss when and how to study human embryo and early fetuses and some of the regulations of this research. [source]