Home About us Contact | |||
Embryonic Epidermis (embryonic + epidermis)
Selected AbstractsEmbryonic keratinization in vertebrates in relation to land colonizationACTA ZOOLOGICA, Issue 1 2009L. Alibardi Abstract The embryogenesis and cytology of the epidermis in different vertebrates is variable in relation to the formation of a stratum corneum of different complexity. The latter process was essential for land colonization during vertebrate evolution and produced an efficient barrier in amniotes. Keratinocytes are made of cross-linked keratins associated with specific proteins and lipids that are produced at advanced stages of embryogenesis when the epidermis becomes stratified. In these stages the epidermis changes from an aquatic to a terrestrial type, preadapted in preparation for the impact with the dry terrestrial environment that occurs at hatching or parturition. The epidermal barrier against water-loss, mechanical and chemical stress, and microbe penetration is completely formed shortly before birth. Beneath the outer periderm, variably stratified embryonic layers containing glycine-rich alpha-keratins are formed in preparation for adult life. The following layers of the epidermis produce proteins for the formation of the cornified cell membrane and of the cornified material present in keratinocytes of the adult epidermis in reptiles, birds and mammals. The general features of the process of soft cornification in the embryonic epidermis of vertebrates are presented. Cornification in developing scales in reptiles, avian feathers and mammalian hairs is mainly related to the evolution of keratin-associated proteins. The latter proteins form the resistant matrix of hard skin derivatives such as claws, beaks, nails and horns. [source] Differentiation of the epidermis of scutes in embryos and juveniles of the tortoise Testudo hermanni with emphasis on beta-keratinizationACTA ZOOLOGICA, Issue 3 2005L. Alibardi Abstract The sequence of differentiation of the epidermis of scutes during embryogenesis in the tortoise Testudo hermanni was studied using autoradiography, electron microscopy and immunocytochemistry. The study was mainly conducted on the epidermis of the carapace, plastron and nail. Epidermal differentiation resembles that described for other reptiles, and the embryonic epidermis is composed of numerous cell layers. In the early stages of differentiation of the carapacial ridge, cytoplasmic blebs of epidermal cells are in direct contact with the extracellular matrix and mesenchymal cells. The influence of the dermis on the formation of the beta-layer is discussed. The dermis becomes rich in collagen bundles at later stages of development. The embryonic epidermis is formed by a flat periderm and four to six layers of subperidermal cells, storing 40,70-nm-thick coarse filaments that may represent interkeratin or matrix material. Beta-keratin is associated with the coarse filaments, suggesting that the protein may be polymerized on their surface. The presence of beta-keratin in embryonic epidermis suggests that this keratin might have been produced at the beginning of chelonian evolution. The embryonic epidermis of the scutes is lost around hatching and leaves underneath the definitive corneous beta-layer. Beneath the embryonic epidermis, cells that accumulate typical large bundles of beta-keratin appear at stage 23 and at hatching a compact beta-layer is present. The differentiation of these cells shows the progressive replacement of alpha-keratin bundles with bundles immunolabelled for beta-keratin. The nucleus is degraded and electron-dense nuclear material mixes with beta-keratin. In general, changes in tortoise skin when approaching terrestrial life resemble those of other reptiles. Lepidosaurian reptiles form an embryonic shedding layer and crocodilians have a thin embryonic epidermis that is rapidly lost near hacthing. Chelonians have a thicker embryonic epidermis that accumulates beta-keratin, a protein later used to make a thick corneous layer. [source] Epidermal differentiation in embryos of the tuatara Sphenodon punctatus (Reptilia, Sphenodontidae) in comparison with the epidermis of other reptilesJOURNAL OF ANATOMY, Issue 1 2007L. Alibardi Abstract Studying the epidermis in primitive reptiles can provide clues regarding evolution of the epidermis during land adaptation in vertebrates. With this aim, the development of the skin of the relatively primitive reptile Sphenodon punctatus in representative embryonic stages was studied by light and electron microscopy and compared with that of other reptiles previously studied. The dermis organizes into a superficial and deep portion when the epidermis starts to form the first layers. At embryonic stages comparable with those of lizards, only one layer of the inner periderm is formed beneath the outer periderm. This also occurs in lizards and snakes so far studied. The outer and inner periderm form the embryonic epidermis and accumulate thick, coarse filaments (25,30 nm thick) and sparse alpha-keratin filaments as in other reptiles. Beneath the embryonic epidermis an oberhautchen and beta-cells form small horny tips that represent overlapping borders along the margin of beta-cells that overlap other beta-cells (in a tile-like arrangement). The tips resemble those of agamine lizards but at a small scale, forming a lamellate-spinulated pattern as previously described in adult epidermis. The embryonic epidermis matures by the dispersion of coarse filaments among keratin at the end of embryonic development and is shed around hatching. The presence of these matrix organelles in the embryonic epidermis of this primitive reptile further indicates that amniote epidermis acquired interkeratin matrix proteins early for land adaptation. Unlike the condition in lizards and snakes, a shedding complex is not formed in the epidermis of embryonic S. punctatus that is like that of the adult. Therefore, as in chelonians and crocodilians, the epidermis of S. punctatus also represents an initial stage that preceded the evolution of the shedding complex for moulting. [source] |