Embryonic Death (embryonic + death)

Distribution by Scientific Domains


Selected Abstracts


Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNS

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2004
Dervla M. Mellerick
Abstract Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 308,318, 2004 [source]


The essential haematopoietic transcription factor Scl is also critical for neuronal development

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2006
Cara K. Bradley
Abstract The basic helix-loop-helix (bHLH) transcription factor Scl displays tissue-restricted expression and is critical for the establishment of the haematopoietic system; loss of Scl results in embryonic death due to absolute anaemia. Scl is also expressed in neurons of the mouse diencephalon, mesencephalon and metencephalon; however, its requirement in those sites remains to be determined. Here we report conditional deletion of Scl in neuronal precursor cells using the Cre/LoxP system. Neuronal-Scl deleted mice died prematurely, were growth retarded and exhibited an altered motor phenotype characterized by hyperactivity and circling. Moreover, ablation of Scl in the nervous system affected brain morphology with abnormal neuronal development in brain regions known to express Scl under normal circumstances; there was an almost complete absence of Scl-null neurons in the hindbrain and partial loss of Scl-null neurons in the thalamus and midbrain from early neurogenesis onwards. Our results demonstrate a crucial role for Scl in the development of Scl-expressing neurons, including ,-aminobutyric acid (GABA)ergic interneurons. Our study represents one of the first demonstrations of functional overlap of a single bHLH protein that regulates neural and haematopoietic cell development. This finding underlines Scl's critical function in cell fate determination of mesodermal as well as neuroectodermal tissues. [source]


Uterine evaluation and gestation diagnosis in owl monkey (Aotus azarai infulatus) using the B mode ultrasound

JOURNAL OF MEDICAL PRIMATOLOGY, Issue 3 2006
Frederico O B Monteiro
Abstract Background, Gynecological and obstetrical ultrasonography has become an indispensable tool in the routine management, health evaluation and research on captive non-human primates. Methods, Ultrasound was used to evaluate the uterus and estimate the gestation of owl monkeys. Twelve couples were selected, where five were primiparous and seven multiparous females from the National Primate Center reproductive colony, Ananindeua-PA, Brazil. The procedures were carried out using the GE® Logiq 100 MP, equipped with a 7.5 MHz linear probe. Results, The females showed a simple uterus, of elongated shape, regular outline and homogeneous echogenic texture. In the uterine measurements craniocaudal diameter, dorsoventral diameter and uterine volume (UV), significant differences were identified (P < 0.05) between ultrasound examinations of primiparous and multiparous females. The UV showed a positive correlation with the number of births. The gestational sac and the embryonic echo were visible between 28 and 38 days after mating. Between 48 and 68 days after mating, embryonic death was identified in all the gestations. Conclusions, The chemical (use of tranquilizers) and husbandry factors (capture stress) may be related to the prenatal death. The establishing methods of conditioning the female to the ultrasonographic exam may offer a solution to this problem. [source]


Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system

JOURNAL OF NEUROCHEMISTRY, Issue 3 2006
Steve Poirier
Abstract Neural apoptosis-regulated convertase-1/proprotein convertase subtilisin-kexin like-9 (NARC-1/PCSK9) is a proprotein convertase recently described to play a major role in cholesterol homeostasis through enhanced degradation of the low-density lipoprotein receptor (LDLR) and possibly in neural development. Herein, we investigated the potential involvement of this proteinase in the development of the CNS using mouse embryonal pluripotent P19 cells and the zebrafish as models. Time course quantitative RT,PCR analyses were performed following retinoic acid (RA)-induced neuroectodermal differentiation of P19 cells. Accordingly, the mRNA levels of NARC-1/PCSK9 peaked at day 2 of differentiation and fell off thereafter. In contrast, the expression of the proprotein convertases subtilisin kexin isozyme 1/site 1 protease and Furin was unaffected by RA, whereas that of PC5/6 and PC2 increased within and/or after the first 4 days of the differentiation period respectively. This pattern was not affected by the cholesterogenic transcription factor sterol regulatory element-binding protein-2, which normally up-regulates NARC-1/PCSK9 mRNA levels in liver. Furthermore, in P19 cells, RA treatment did not affect the protein level of the endogenous LDLR. This agrees with the unique expression pattern of NARC-1/PCSK9 in the rodent CNS, including the cerebellum, where the LDLR is not significantly expressed. Whole-mount in situ hybridization revealed that the pattern of expression of zebrafish NARC-1/PCSK9 is similar to that of mouse both in the CNS and periphery. Specific knockdown of zebrafish NARC-1/PCSK9 mRNA resulted in a general disorganization of cerebellar neurons and loss of hindbrain,midbrain boundaries, leading to embryonic death at ,,96 h after fertilization. These data support a novel role for NARC-1/PCSK9 in CNS development, distinct from that in cholesterogenic organs such as liver. [source]


Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2005
B.P.B. Rambags
Chromosomal aberrations are often listed as a significant cause of early embryonic death in the mare, despite the absence of any concrete evidence for their involvement. The current study aimed to validate fluorescent in situ hybridization (FISH) probes to label specific equine chromosomes (ECA2 and ECA4) in interphase nuclei and thereby determine whether numerical chromosome abnormalities occur in horse embryos produced either in vivo (n,=,22) or in vitro (IVP: n,=,20). Overall, 75% of 36,720 and 88% of 2,978 nuclei in the in vivo developed and IVP embryos were analyzable. Using a scoring system in which extra FISH signals were taken to indicate increases in ploidy and "missing" signals were assumed to be "false negatives," 98% of the cells were scored as diploid and the majority of embryos (30/42: 71%) were classified as exclusively diploid. However, one IVP embryo was recorded as entirely triploid and a further seven IVP and four in vivo embryos were classified as mosaics containing diploid and polyploid cells, such that the incidence of apparently mixoploid embryos tended to be higher for IVP than in vivo embryos (P,=,0.118). When the number of FISH signals per nucleus was examined in more detail for 11 of the embryos, the classification as diploid or polyploid was largely supported because 2,174 of 2,274 nuclei (95.6%) contained equal numbers of signals for the two chromosomes. However, the remaining 100 cells (4.4%) had an uneven number of chromosomes and, while it is probable that many were artefacts of the FISH procedure, it is also likely that a proportion were the result of other types of aneuploidy (e.g., trisomy, monosomy, or nullisomy). These results demonstrate that chromosomally abnormal cells are present in morphologically normal equine conceptuses and suggest that IVP may increase their likelihood. Definitive distinction between polyploidy, aneuploidy and FISH artefacts would require the use of more than one probe per chromosome and/or probes for more than two chromosomes. © 2005 Wiley-Liss, Inc. [source]


Development of the coronary vasculature and its implications for coronary abnormalities in general and specifically in pulmonary atresia without ventricular septal defect

ACTA PAEDIATRICA, Issue 2004
AC Gittenberger-de Groot
Aim: Coronary vascular anomalies are an important factor in congenital heart disease in the neonate. However, our knowledge of the pathomorphogenesis is still defective. Material and methods: 1) Study of coronary anomaly variations in congenital heart disease using specimens and 2) study of the role of epicardium-derived cells (EPDC) and neural crest cells in coronary vascular formation using quail-chicken chimeras. Results: The clinical and pathological data revealed the existence of ventriculo-coronary arterial communications during fetal life before pulmonary atresia was established. This supported a primary coronary developmental anomaly as the origin of some cases of pulmonary atresia as opposed to other cases in which the pulmonary orifice atresia was the primary anomaly. Our experimental work showed the high relevance of the development of the epicardium and epicardium-derived cells for the formation of the coronary vasculature, and showed the coronary vascular ingrowth into the myocardium and subsequently into the aorta and the right atrium. The absence of epicardium-derived cells leads to embryonic death, while delayed outgrowth could result in the absence of the main coronary arteries to pinpoint orifice formation. In these cases, the circulation was maintained through ventriculocoronary arterial communications. Neural crest cells were important for the patterning of the coronary vasculature. We have extended this knowledge to a number of other heart malformations. Conclusions: Coronary vascular anomalies are highly linked to the development of extracardiac contributors like the epicardium and the neural crest. A proper interaction between these cell types and the myocardium and aortic arterial wall are important for normal vascular development. [source]